TY - GEN A1 - Mohandesan, Elmira A1 - Speller, Camilla F. A1 - Peters, Joris A1 - Uerpmann, Hans-Peter A1 - Uerpmann, Margarethe A1 - De Cupere, Bea A1 - Hofreiter, Michael A1 - Burger, Pamela A. T1 - Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The performance of hybridization capture combined with next-generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient-domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187-fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient-domestic dromedaries with 17-95% length coverage and 1.27-47.1-fold read depths for the covered regions. Using whole-genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1-1.06-fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 789 KW - ancient DNA KW - Camelus dromedarius KW - capture enrichment KW - degraded DNA KW - mitochondrial genome (mtDNA) KW - next-generation sequencing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439955 SN - 1866-8372 IS - 789 SP - 300 EP - 313 ER - TY - JOUR A1 - Mohandesan, Elmira A1 - Speller, Camilla F. A1 - Peters, Joris A1 - Uerpmann, Hans-Peter A1 - Uerpmann, Margarethe A1 - De Cupere, Bea A1 - Hofreiter, Michael A1 - Burger, Pamela A. T1 - Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel JF - Molecular ecology resources N2 - The performance of hybridization capture combined with next-generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient-domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187-fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient-domestic dromedaries with 17-95% length coverage and 1.27-47.1-fold read depths for the covered regions. Using whole-genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1-1.06-fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens. KW - ancient DNA KW - Camelus dromedarius KW - capture enrichment KW - degraded DNA KW - mitochondrial genome (mtDNA) KW - next-generation sequencing Y1 - 2017 U6 - https://doi.org/10.1111/1755-0998.12551 SN - 1755-098X SN - 1755-0998 VL - 17 IS - 2 SP - 300 EP - 313 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - Gonzalez-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA BT - technical advances and conceptual shifts T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 908 KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438816 SN - 1866-8372 IS - 908 SP - 284 EP - 295 ER - TY - JOUR A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA: Technical advances and conceptual shifts JF - Bioessays : ideas that push the boundaries N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2015 U6 - https://doi.org/10.1002/bies.201400160 SN - 0265-9247 SN - 1521-1878 VL - 37 IS - 3 SP - 284 EP - 293 PB - Wiley-Blackwell CY - Hoboken ER -