TY - JOUR A1 - Werner, Klaus A1 - Dreizler, S. A1 - Rauch, Thomas A1 - Koesterke, Lars A1 - Heber, Ulrich T1 - Born-again AGB stars : staring point of the H-deficient post-AGB evolutionary sequence? Y1 - 1999 ER - TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Miller Bertolami, Marcelo Miguel A1 - Todt, Helge Tobias A1 - Werner, K. T1 - Breaking news from the HST BT - the central star of the Stingray Nebula is now returning towards the AGB JF - Monthly notices of the Royal Astronomical Society N2 - SAO 244567 is a rare example of a star that allows us to witness stellar evolution in real time. Between 1971 and 1990, it changed from a B-type star into the hot central star of the Stingray Nebula. This observed rapid heating has been a mystery for decades, since it is in strong contradiction with the low mass of the star and canonical post-asymptotic giant branch (AGB) evolution. We speculated that SAO 244567 might have suffered from a late thermal pulse (LTP) and obtained new observations with Hubble Space Telescope (HST)/COS to follow the evolution of the surface properties of SAO 244567 and to verify the LTP hypothesis. Our non-LTE spectral analysis reveals that the star cooled significantly since 2002 and that its envelope is now expanding. Therefore, we conclude that SAO 244567 is currently on its way back towards the AGB, which strongly supports the LTP hypothesis. A comparison with state-of-the-art LTP evolutionary calculations shows that these models cannot fully reproduce the evolution of all surface parameters simultaneously, pointing out possible shortcomings of stellar evolution models. Thereby, SAO 244567 keeps on challenging stellar evolution theory and we highly encourage further investigations. KW - stars: AGB and post-AGB KW - stars: atmospheres KW - stars: evolution Y1 - 2016 U6 - https://doi.org/10.1093/mnrasl/slw175 SN - 0035-8711 SN - 1365-2966 VL - 464 SP - L51 EP - L55 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Werner, Klaus A1 - Rauch, Thomas A1 - Dreizler, S. A1 - Heber, Ulrich T1 - Confining the edges of the GW Vir Instability Strip Y1 - 1995 ER - TY - JOUR A1 - Werner, Klaus A1 - Dreizler, S. A1 - Heber, Ulrich A1 - Rauch, Thomas T1 - Confining the edges of the GW Vir instability strip Y1 - 1995 ER - TY - JOUR A1 - Werner, Klaus A1 - Dreizler, S. A1 - Heber, Ulrich A1 - Rauch, Thomas A1 - Wisotzki, Lutz A1 - Hagen, H.-J. T1 - Discovery of two hot DO white dwarfs exhibiting ultrahigh-excitation absorption lines Y1 - 1995 ER - TY - JOUR A1 - Werner, Klaus A1 - Dreizler, S. A1 - Rauch, Thomas A1 - Barnstedt, Jürgen A1 - Göz, M. A1 - Gringel, W. A1 - Kappelmann, N. A1 - Krämer, G. A1 - Widmann, H. A1 - Koesterke, Lars A1 - Haas, S. A1 - Heber, Ulrich A1 - Appenzeller, Immo T1 - FUV spectroscpy of DO an PG 1159 stars with ORFEUS Y1 - 1999 ER - TY - JOUR A1 - Werner, Klaus A1 - Dreizler, S. A1 - Heber, Ulrich A1 - Rauch, Thomas A1 - Fleming, T. A. A1 - Sion, E. M. A1 - Vauclair, G. T1 - High resolution spectroscopy of two hot (pre-) white dwarfs with the Hubble space telescope : KPD 0005+5106 and RXJ 2117+3412 Y1 - 1996 ER - TY - JOUR A1 - Richter, Philipp A1 - de Boer, Klaas S. A1 - Werner, Klaus A1 - Rauch, Thomas T1 - High-velocity gas toward the LMC resides in the Milky Way halo JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud, (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d = 9.2(-7.2)(+4.1) kpc distance. Methods. We study the velocity-component structure of low and intermediate metal ions (CII, SiII, SiIII) in the spectrum of RXJ0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer (FUSE) spectrum of the nearby LMC star Sk-69 59 and with Hi 21 cm data from the Leiden-Argentina-Bonn (LAB) survey. Results. Metal absorption toward RXJ0439.8-6809 is unambiguously detected in three different velocity components near v(LSR) = 0, + 60, and + 150 km s(-1). The presence of absorption proves that all three gas components are situated in front of the star, thus located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at v(LSR) = + 150 km s(-1), we derive an oxygen abundance of [O/H] = -0.63 (similar to 0.2 solar) from the neighboring Sk-69 59 sight line, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Conclusions. Our study shows that the HVC toward the LMC represents a Milky Way halo cloud that traces low column density gas with relatively low metallicity. We rule out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow. KW - Galaxy: halo KW - Galaxy: evolution KW - ISM: abundances KW - ISM: structure Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201527451 SN - 1432-0746 VL - 584 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Dreizler, S. A1 - Werner, Klaus A1 - Rauch, Thomas A1 - Koesterke, Lars A1 - Heber, Ulrich T1 - NLTE Analyses of PG 1159 stars : Contraints for the structure and evolutiuon of Post-AGB stars Y1 - 1997 ER - TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Werner, Klaus A1 - Kruk, J. W. A1 - Todt, Helge Tobias T1 - On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs. KW - stars: AGB and post-AGB KW - stars: evolution KW - stars: fundamental parameters KW - stars: abundances Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423498 SN - 0004-6361 SN - 1432-0746 VL - 566 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Koesterke, Lars A1 - Dreizler, S. A1 - Rauch, Thomas T1 - On the mass-loss of PG 1159 stars Y1 - 1998 ER - TY - JOUR A1 - Werner, Klaus A1 - Dreizler, S. A1 - Heber, Ulrich A1 - Rauch, Thomas T1 - PG 1159 stars Y1 - 1996 ER - TY - JOUR A1 - Löbling, Lisa A1 - Rauch, Thomas A1 - Bertolami Miller, Marcelo Miguel A1 - Todt, Helge Tobias A1 - Friederich, F. A1 - Ziegler, M. A1 - Werner, Klaus A1 - Kruk, J. W. T1 - Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC7094 JF - Monthly notices of the Royal Astronomical Society N2 - Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the Herich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of H approximate to 20 per cent by mass (AFTP), approximate to 1 per cent (LTP), or (almost) no H (VLTP). Since FTP stars exhibit intershell material at their surface, spectral analyses establish constraints for AGB nucleosynthesis and stellar evolution. We performed a spectral analysis of the so-called hybrid PG 1159-type central stars (CS) of the planetary nebulae Abell 43 and NGC7094 by means of non-local thermodynamical equilibrium models. We confirm the previously determined effective temperatures of T-eff = 115 000 +/- 5 000K and determine surface gravities of log (g /(cm s(-2))) = 5.6 +/- 0.1 for both. From a comparison with AFTP evolutionary tracks, we derive stellar masses of 0.57(-0.04)(+0.07)M(circle dot) and determine the abundances of H, He, and metals up to Xe. Both CS are likely AFTP stars with a surface H mass fraction of 0.25 +/- 0.03 and 0.15 +/- 0.03, respectively, and an Fe deficiency indicating subsolar initial metallicities. The light metals show typical PG 1159-type abundances and the elemental composition is in good agreement with predictions from AFTP evolutionary models. However, the expansion ages do not agree with evolution time-scales expected from the AFTP scenario and alternatives should be explored. KW - stars: abundances KW - stars: AGB and post-AGB KW - stars: atmospheres KW - stars: evolution KW - stars: individual: WD1751+106 KW - stars: individual: WD2134+125 Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz1994 SN - 0035-8711 SN - 1365-2966 VL - 489 IS - 1 SP - 1054 EP - 1071 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Parthasarathy, M. A1 - Werner, K. A1 - Kruk, J. W. A1 - Hamann, Wolf-Rainer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias T1 - The rapid evolution of the exciting star of the Stingray nebula JF - Astronomy and astrophysics : an international weekly journal N2 - Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims. A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results. We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M-circle dot yr(-1)) = -9.0 to -11.6 and the terminal wind velocity increased from v(infinity) = 1800 km s(-1) to 2800 km s(-1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions. The position of SAO 244567 in the log T-eff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M < 0.55 M-circle dot). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAD 244567 would be a low-mass (0.354 M-circle dot) helium pre-white dwarf after the common-envelope phase, during which the planetary nebula was ejected. KW - stars: abundances KW - stars: evolution KW - stars: AGB and post-AGB KW - stars: individual: SAO 244567 KW - stars: fundamental parameters KW - planetary nebulae: individual: Stingray nebula (Henize 3-1357) Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201323189 SN - 0004-6361 SN - 1432-0746 VL - 565 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Maier, Philipp A1 - Wolf, Jürgen A1 - Keilig, Thomas A1 - Krabbe, Alfred A1 - Duffard, Rene A1 - Ortiz, Jose-Luis A1 - Klinkner, Sabine A1 - Lengowski, Michael A1 - Müller, Thomas A1 - Lockowandt, Christian A1 - Krockstedt, Christian A1 - Kappelmann, Norbert A1 - Stelzer, Beate A1 - Werner, Klaus A1 - Geier, Stephan Alfred A1 - Kalkuhl, Christoph A1 - Rauch, Thomas A1 - Schanz, Thomas A1 - Barnstedt, Jürgen A1 - Conti, Lauro A1 - Hanke, Lars T1 - Towards a European Stratospheric Balloon Observatory BT - the ESBO design study T2 - Ground-based and Airborne Telescopes VII N2 - This paper presents the concept of a community-accessible stratospheric balloon-based observatory that is currently under preparation by a consortium of European research institutes and industry. We present the technical motivation, science case, instrumentation, and a two-stage image stabilization approach of the 0.5-m UV/visible platform. In addition, we briefly describe the novel mid-sized stabilized balloon gondola under design to carry telescopes in the 0.5 to 0.6 m range as well as the currently considered flight option for this platform. Secondly, we outline the scientific and technical motivation for a large balloon-based FIR telescope and the ESBO DS approach towards such an infrastructure. KW - astronomy KW - balloon telescopes KW - UV KW - far infrared KW - detectors KW - observatory Y1 - 2018 SN - 978-1-5106-1954-8 U6 - https://doi.org/10.1117/12.2319248 SN - 0277-786X SN - 1996-756X VL - 10700 PB - SPIE-INT Soc Optical Engineering CY - Bellingham ER - TY - JOUR A1 - Werner, Klaus A1 - Dreizler, S. A1 - Heber, Ulrich A1 - Rauch, Thomas T1 - Triple-alpha burning products on the surface of peculiar post-AGB stars Y1 - 1995 ER - TY - JOUR A1 - Rauch, Thomas A1 - Quinet, P. A1 - Hoyer, D. A1 - Werner, K. A1 - Richter, Philipp A1 - Kruk, J. W. A1 - Demleitner, M. T1 - VII. New Kr IV - VII oscillator strengths and an improved spectral analysis of the hot, hydrogen-deficient DO-type white dwarf RE 0503-289 JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Kr IV-VII oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTE model-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Kr IV-VII oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high S/N ultraviolet (UV) observations of the hot white dwarf RE 0503-289. Results. We reanalyzed the effective temperature and surface gravity and determined T-eff = 70 000 +/- 2000 K and log (g/cm s(-2)) = 7.5 +/- 0.1. We newly identified ten Kr V lines and one Kr vi line in the spectrum of RE 0503-289. We measured a Kr abundance of 3.3 +/- 0.3 (logarithmic mass fraction). We discovered that the interstellar absorption toward RE 0503-289 has a multi-velocity structure within a radial-velocity interval of -40 km s(-1) < upsilon(rad) < +18 km s(-1). Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for state-of-the-art NLTE stellar-atmosphere modeling. Observed Kr V-VII line profiles in the UV spectrum of the white dwarf RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. KW - atomic data KW - line: identification KW - stars: abundances KW - stars: individual: RE 0503-289 KW - virtual observatory tools KW - stars: individual: RE 0457-281 Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628131 SN - 1432-0746 VL - 590 PB - EDP Sciences CY - Les Ulis ER -