TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - "That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description Y1 - 2007 ER - TY - GEN A1 - Gebser, Martin A1 - Harrison, Amelia A1 - Kaminski, Roland A1 - Lifschitz, Vladimir A1 - Schaub, Torsten H. T1 - Abstract gringo T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This paper defines the syntax and semantics of the input language of the ASP grounder gringo. The definition covers several constructs that were not discussed in earlier work on the semantics of that language, including intervals, pools, division of integers, aggregates with non-numeric values, and lparse-style aggregate expressions. The definition is abstract in the sense that it disregards some details related to representing programs by strings of ASCII characters. It serves as a specification for gringo from Version 4.5 on. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 592 KW - nested expressions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414751 SN - 1866-8372 IS - 592 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report Y1 - 2007 ER - TY - JOUR A1 - Gebser, Martin A1 - Sabuncu, Orkunt A1 - Schaub, Torsten H. T1 - An incremental answer set programming based system for finite model computation JF - AI communications : AICOM ; the European journal on artificial intelligence N2 - We address the problem of Finite Model Computation (FMC) of first-order theories and show that FMC can efficiently and transparently be solved by taking advantage of a recent extension of Answer Set Programming (ASP), called incremental Answer Set Programming (iASP). The idea is to use the incremental parameter in iASP programs to account for the domain size of a model. The FMC problem is then successively addressed for increasing domain sizes until an answer set, representing a finite model of the original first-order theory, is found. We implemented a system based on the iASP solver iClingo and demonstrate its competitiveness by showing that it slightly outperforms the winner of the FNT division of CADE's 2009 Automated Theorem Proving (ATP) competition on the respective benchmark collection. KW - Incremental answer set programming KW - finite model computation Y1 - 2011 U6 - https://doi.org/10.3233/AIC-2011-0496 SN - 0921-7126 VL - 24 IS - 2 SP - 195 EP - 212 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Bomanson, Jori A1 - Janhunen, Tomi A1 - Schaub, Torsten H. A1 - Gebser, Martin A1 - Kaufmann, Benjamin T1 - Answer Set Programming Modulo Acyclicity JF - Fundamenta informaticae N2 - Acyclicity constraints are prevalent in knowledge representation and applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related to recursive structures. In the technical results of the paper, we relate the new generalization with standard ASP by showing (i) how acyclicity extensions translate into normal rules, (ii) how weight constraint programs can be instrumented by acyclicity extensions to capture stability in analogy to unfounded set checking, and (iii) how the gap between supported and stable models is effectively closed in the presence of such an extension. Moreover, we present an efficient implementation of acyclicity constraints by incorporating a respective propagator into the state-of-the-art ASP solver CLASP. The implementation provides a unique combination of traditional unfounded set checking with acyclicity propagation. In the experimental part, we evaluate the interplay of these orthogonal checks by equipping logic programs with supplementary acyclicity constraints. The performance results show that native support for acyclicity constraints is a worthwhile addition, furnishing a complementary modeling construct in ASP itself as well as effective means for translation-based ASP solving. Y1 - 2016 U6 - https://doi.org/10.3233/FI-2016-1398 SN - 0169-2968 SN - 1875-8681 VL - 147 SP - 63 EP - 91 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Approaching the core of unfounded sets Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angesc06a.pdf ER - TY - GEN A1 - Schäpers, Björn A1 - Niemueller, Tim A1 - Lakemeyer, Gerhard A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - ASP-Based Time-Bounded Planning for Logistics Robots T2 - Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018) N2 - Manufacturing industries are undergoing a major paradigm shift towards more autonomy. Automated planning and scheduling then becomes a necessity. The Planning and Execution Competition for Logistics Robots in Simulation held at ICAPS is based on this scenario and provides an interesting testbed. However, the posed problem is challenging as also demonstrated by the somewhat weak results in 2017. The domain requires temporal reasoning and dealing with uncertainty. We propose a novel planning system based on Answer Set Programming and the Clingo solver to tackle these problems and incentivize robot cooperation. Our results show a significant performance improvement, both, in terms of lowering computational requirements and better game metrics. Y1 - 2018 SN - 2334-0835 SN - 2334-0843 SP - 509 EP - 517 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Clasp : a conflict-driven answer set solver Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Schaub, Torsten H. T1 - Complex optimization in answer set programming JF - Theory and practice of logic programming N2 - Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications. KW - Answer Set Programming KW - Preference Handling KW - Complex optimization KW - Meta-Programming Y1 - 2011 U6 - https://doi.org/10.1017/S1471068411000329 SN - 1471-0684 VL - 11 IS - 3 SP - 821 EP - 839 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Schaub, Torsten H. T1 - Complex optimization in answer set programming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 554 KW - answer set programming KW - preference handling KW - complex optimization KW - meta-programming Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412436 SN - 1866-8372 IS - 554 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Conflict-driven answer set enumeration Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Conflict-driven answer set solving Y1 - 2007 SN - 978-1-57735-323-2 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Schaub, Torsten H. T1 - Conflict-driven answer set solving: From theory to practice JF - Artificial intelligence N2 - We introduce an approach to computing answer sets of logic programs, based on concepts successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with a uniform constraint-based framework capturing diverse inferences encountered in ASP solving. Moreover, our approach allows us to apply advanced solving techniques from the area of SAT. As a result, we present the first full-fledged algorithmic framework for native conflict-driven ASP solving. Our approach is implemented in the ASP solver clasp that has demonstrated its competitiveness and versatility by winning first places at various solver contests. KW - Answer set programming KW - Logic programming KW - Nonmonotonic reasoning Y1 - 2012 U6 - https://doi.org/10.1016/j.artint.2012.04.001 SN - 0004-3702 VL - 187 IS - 8 SP - 52 EP - 89 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Debugging ASP programs by means of ASP Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Janhunen, Tomi A1 - Rintanen, Jussi T1 - Declarative encodings of acyclicity properties JF - Journal of logic and computation N2 - Many knowledge representation tasks involve trees or similar structures as abstract datatypes. However, devising compact and efficient declarative representations of such structural properties is non-obvious and can be challenging indeed. In this article, we take a number of acyclicity properties into consideration and investigate various logic-based approaches to encode them. We use answer set programming as the primary representation language but also consider mappings to related formalisms, such as propositional logic, difference logic and linear programming. We study the compactness of encodings and the resulting computational performance on benchmarks involving acyclic or tree structures. KW - acyclicity properties KW - logic-based modeling KW - answer set programming KW - satisfiability Y1 - 2015 U6 - https://doi.org/10.1093/logcom/exv063 SN - 0955-792X SN - 1465-363X VL - 30 IS - 4 SP - 923 EP - 952 PB - Oxford Univ. Press CY - Eynsham, Oxford ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Veber, Philippe T1 - Detecting inconsistencies in large biological networks with answer set programming JF - Theory and practice of logic programming N2 - We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions. KW - answer set programming KW - bioinformatics KW - consistency KW - diagnosis Y1 - 2011 U6 - https://doi.org/10.1017/S1471068410000554 SN - 1471-0684 VL - 11 IS - 5-6 SP - 323 EP - 360 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Veber, Philippe T1 - Detecting inconsistencies in large biological networks with answer set programming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 561 KW - answer set programming KW - bioinformatics KW - consistency KW - diagnosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412467 SN - 1866-8372 IS - 561 ER - TY - JOUR A1 - Gebser, Martin A1 - Obermeier, Philipp A1 - Otto, Thomas A1 - Schaub, Torsten H. A1 - Sabuncu, Orkunt A1 - Van Nguyen, A1 - Tran Cao Son, T1 - Experimenting with robotic intra-logistics domains JF - Theory and practice of logic programming N2 - We introduce the asprilo1 framework to facilitate experimental studies of approaches addressing complex dynamic applications. For this purpose, we have chosen the domain of robotic intra-logistics. This domain is not only highly relevant in the context of today's fourth industrial revolution but it moreover combines a multitude of challenging issues within a single uniform framework. This includes multi-agent planning, reasoning about action, change, resources, strategies, etc. In return, asprilo allows users to study alternative solutions as regards effectiveness and scalability. Although asprilo relies on Answer Set Programming and Python, it is readily usable by any system complying with its fact-oriented interface format. This makes it attractive for benchmarking and teaching well beyond logic programming. More precisely, asprilo consists of a versatile benchmark generator, solution checker and visualizer as well as a bunch of reference encodings featuring various ASP techniques. Importantly, the visualizer's animation capabilities are indispensable for complex scenarios like intra-logistics in order to inspect valid as well as invalid solution candidates. Also, it allows for graphically editing benchmark layouts that can be used as a basis for generating benchmark suites. Y1 - 2018 U6 - https://doi.org/10.1017/S1471068418000200 SN - 1471-0684 SN - 1475-3081 VL - 18 IS - 3-4 SP - 502 EP - 519 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Generic tableaux for answer set programming Y1 - 2007 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven T1 - GrinGo : a new grounder for answer set programming Y1 - 2007 SN - 978-3-540- 72199-4 ER -