TY - GEN A1 - Acevedo, Walter A1 - Fallah, Bijan A1 - Reich, Sebastian A1 - Cubasch, Ulrich T1 - Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 627 KW - high resolution paleoclimatology KW - sparse proxy data KW - climate reconstructions KW - limiting factors KW - Kalman filter KW - co-limitation KW - ensemble KW - variability KW - reanalysis KW - framework Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418743 SN - 1866-8372 IS - 627 SP - 545 EP - 557 ER - TY - JOUR A1 - Acevedo, Walter A1 - Fallah, Bijan A1 - Reich, Sebastian A1 - Cubasch, Ulrich T1 - Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts. Y1 - 2017 U6 - https://doi.org/10.5194/cp-13-545-2017 SN - 1814-9324 SN - 1814-9332 VL - 13 SP - 545 EP - 557 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Polanski, Stefan A1 - Fallah, Bijan A1 - Befort, Daniel J. A1 - Prasad, Sushma A1 - Cubasch, Ulrich T1 - Regional moisture change over India during the past millennium: A comparison of multi-proxy reconstructions and climate model simulations JF - Global and planetary change N2 - The Indian Monsoon Variability during the past Millennium has been simulated with the ECHAM5 model in two different time slices: Medieval Climate Anomaly and the Little Ice Age. The simulations are compared with new centennial-resolving paleo-reconstructions inferred from various well-dated multi-proxies from two core regions, the Himalaya and Central India. A qualitative moisture index is derived from the proxies and compared with simulated moisture anomalies. The reconstructed paleo-hydrological changes between the Little Ice Age and the Medieval Climate Anomaly depict a dipole pattern between Himalaya and Central India, which is also captured by the model. In the Medieval Climate Anomaly the model exhibits stronger (weaker) dipole signals during summer (winter) compared to Little Ice Age. In summer (winter) months of "Medieval Climate Anomaly minus Little Ice Age" the model simulates wetter conditions over eastern (western and central) Himalaya. Over Central India, a simulated weakening of Indian Summer Monsoon during warmer climate is coincident with reconstructed drying signal in the Lonar Lake record. Based on the model simulations, we can differentiate three physical mechanisms which can lead to the moisture anomalies: (i) the western and central Himalaya are influenced by extra-tropical Westerlies during winter, (ii) the eastern Himalaya is affected by summer variations of temperature gradient between Bay of Bengal and Indian subcontinent and by a zonal band of intensified Indian-East Asian monsoon link north of 25 degrees N, and (iii) Central India is dominated by summer sea surface temperature anomalies in the northern Arabian Sea which have an effect on the large-scale advection of moist air masses. The temperatures in the Arabian Sea are linked to the Ind Pacific Warm Pool, which modulates the Indian monsoon strength. (C) 2014 The Authors. Published by Elsevier B.V. KW - Medieval Climate Anomaly KW - Little Ice Age KW - moisture variations in India KW - atmosphere-only climate model simulations KW - Lonar Crater Lake KW - multi-proxy reconstructions Y1 - 2014 U6 - https://doi.org/10.1016/j.gloplacha.2014.08.016 SN - 0921-8181 SN - 1872-6364 VL - 122 SP - 176 EP - 185 PB - Elsevier CY - Amsterdam ER -