TY - JOUR A1 - Dahlke, Sandro A1 - Solbès, Amélie A1 - Maturilli, Marion T1 - Cold air outbreaks in fram strait: climatology, trends, and observations during an extreme season in 2020 JF - Journal of geophysical research : atmospheres N2 - Fram Strait in the northern North Atlantic is a key region for marine cold air outbreaks (MCAOs), southward discharges of polar air under northerly air flow, which have a strong impact on air-sea heat fluxes, boundary layer processes and severe weather. This study investigates climatologies and decadal trends of Fram Strait MCAOs of different intensity classes based on the ERA5 reanalysis product for 1979-2020. Among striking interannual variability, it is shown that the main MCAO season is December through March, when MCAOs occur around 2/3 of the time. We report on significant decadal MCAO decreases in December and January, and a significant increase in March. While the mid-winter decrease is mainly related to the different paces of warming between the surface and the lower atmosphere, the increase in March can be related to changes in synoptic circulation patterns. As an explanation for the latter, a possible feedback between retreating Barents Sea sea ice, enhanced cyclonic activity and Fram Strait MCAOs is postulated. Exemplifying the trend toward stronger MCAOs during March, the study details the recordbreaking MCAO season in early 2020, and an observational case study of an extreme MCAO event in March 2020 is conducted. Thereby, radiosonde observations are combined with kinematic air back-trajectories to provide rare observational evidence for the diabatic cooling and drying during the MCAO preconditioning phase. KW - cold air outbreak KW - North Atlantic variability KW - air mass transformation; KW - ocean-atmosphere energy exchange Y1 - 2022 U6 - https://doi.org/10.1029/2021JD035741 SN - 2169-897X SN - 2169-8996 VL - 127 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dahlke, Sandro A1 - Maturilli, Marion T1 - Contribution of atmospheric advection to the amplified winter warming in the arctic north atlantic region JF - Advances in meteorology N2 - Arctic Amplification of climate warming is caused by various feedback processes in the atmosphere-ocean-ice system and yields the strongest temperature increase during winter in the Arctic North Atlantic region. In our study, we attempt to quantify the advective contribution to the observed atmospheric warming in the Svalbard area. Based on radiosonde measurements from Ny-Ålesund, a strong dependence of the tropospheric temperature on the synoptic flow direction is revealed. Using FLEXTRA backward trajectories, an increase of advection from the lower latitude Atlantic region towards Ny-Ålesund is found that is attributed to a change in atmospheric circulation patterns. We find that about one-quarter (0.45 K per decade) of the observed atmospheric winter near surface warming trend in the North Atlantic region of the Arctic (2 K per decade) is due to increased advection of warm and moist air from the lower latitude Atlantic region, affecting the entire troposphere. Y1 - 2017 U6 - https://doi.org/10.1155/2017/4928620 SN - 1687-9309 SN - 1687-9317 PB - Hindawi Publ. Corp. CY - New York ER - TY - JOUR A1 - Kayser, Markus A1 - Maturilli, Marion A1 - Graham, Robert M. A1 - Hudson, Stephen R. A1 - Rinke, Annette A1 - Cohen, Lana A1 - Kim, Joo-Hong A1 - Park, Sang-Jong A1 - Moon, Woosok A1 - Granskog, Mats A. T1 - Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015) JF - Journal of geophysical research-atmosheres N2 - The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Alesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Alesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Alesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3 degrees C warmer than the climatology during winter. Plain Language Summary The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and the atmospheric boundary layer characteristics. During winter, we find the strongest impact of synoptic cyclones, which transport warm and moist air into the cold and dry Arctic atmosphere. In spring, incoming solar radiation warms the surface. This leads to very different thermodynamic conditions and higher moisture content, which reduces the contrast between stormy and calm periods. Further, we compare the N-ICE2015 measurements to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. The comparisons highlight the value of the N-ICE2015 observation and show the importance of winter time observations in the Arctic North Atlantic sector. Y1 - 2017 U6 - https://doi.org/10.1002/2016JD026089 SN - 2169-897X SN - 2169-8996 VL - 122 IS - 20 SP - 10855 EP - 10872 PB - American Geophysical Union CY - Washington ER -