TY - THES A1 - Bartel, Melanie T1 - Kernresonanz-Strukturuntersuchungen an alternativen Precursoren und deren Zwischenprodukten für die Herstellung von Carbonfasern für den Massenmarkt T1 - Nuclear magnetic resonance structure analyses of alternative precursors and their intermediates for the manufacture of carbon fibers for the mass market N2 - Carbonfasern haben sich in der Luft- und Raumfahrt etabliert und gewinnen in Alltagsanwendungen wie dem Automobilbereich, Windkraft- und Sportbereich durch ihre hohen Zugfestigkeiten, insbesondere ihrer hohen E-Moduli, und ihrer geringen Dichte immer mehr an Bedeutung. Auf Grund ihrer hohen Kosten, welche sich zur Hälfte aus der Precursorherstellung, inklusive seiner Synthese und seinem Verspinnprozess, dem Lösungsspinnverfahren, ergeben, erhalten zunehmend alternative und schmelzspinnbare Precursoren Interesse. Für die Carbonfaserherstellung wird fast ausschließlich Polyacrylnitril (PAN) verwendet, das vor dem Schmelzen irreversible exotherme Zyklisierungsreaktionen aufweist, welchen sich seine Zersetzung anschließt. Eine Möglichkeit der Reduzierung der Schmelztemperatur von Polymeren ist die Einbringung von Comonomeren zur Erhöhung des freien Volumens und die Reduzierung der intermolekularen Wechselwirkungen als interne Weichmacher. Wie am Fraunhofer IAP gezeigt wurde, kann mittels 2-Methoxyethylacrylat (MEA) die Schmelztemperatur zu neuartigen PAN-basierten Precursoren verringert werden. Um den PAN-co-MEA-Precursor für die nachfolgenden Prozessschritte der Carbonfaserherstellung zu verwenden, müssen die thermoplastischen Fasern in thermisch stabile Fasern ohne thermoplastisches Verhalten überführt werden. Es wurde ein neuer Prozessschritt (Prästabilisierung) eingeführt, welcher unter alkalischen Bedingungen zur Abspaltung der Comonomerseitenkette führt. Neben der Esterhydrolyse finden Reaktionen statt, welche an diesem Material noch nicht hinreichend untersucht wurden. Weiterhin stellt sich die Frage nach der Kinetik der Prästabilisierung und der Ermittlung einer geeigneten Prozessführung. Hierzu wurde die Prästabilisierung in den Labormaßstab überführt und die möglichen Zusammensetzungen des aus DMSO und einer KOH-Lösung bestehenden Reaktionsmediums evaluiert. Weiterhin wurde die Behandlung bei verschiedenen Prästabilisierungszeiten von maximal 30 min und Temperaturen von 40, 50 und 60 °C durchgeführt, um primär mittels NMR-Spektroskopie die chemischen Strukturänderungen aufzuklären. Die Esterhydrolyse des Comonomers, welche zur Abspaltung des 2-Methoxyethanols führt, wurde mittels 1H-NMR-spektroskopischer Untersuchungen detektiert. Es wurde ein Modell aufgestellt, das die chemisch-physikalischen Strukturänderungen während der Prästabilisierung aufzeigt. Die zuerst ablaufende Reaktion ist die Esterhydrolyse am Comonomer, welche vom Faserrand nach innen verläuft und durch die Präsenz des DMSO in Kombination mit der KOH-Lösung (Superbase) initiiert wird. Der zeitliche Reaktionsverlauf der Esterhydrolyse kann in drei Bereiche eingeteilt werden. Der erste Bereich ab dem Prästabilisierungsbeginn wird durch die Diffusion der basischen Anionen in die Faser, der zweite Bereich durch die Reaktion an der Estergruppe des Comonomers und der dritte Bereich durch letzte Reaktionen im Faserinneren und diffusiven Prozessen der Produkte und Edukte charakterisiert. Der zweite Bereich kann mit einer Reaktion pseudo 1. Ordnung abgebildet werden, da in diesem Bereich bereits eine ausreichende Diffusion der Edukte in die Faser stattgefunden hat. Bei 50 °C spielt die Diffusion im ersten Bereich im Vergleich zur Reaktion eine untergeordnete Rolle. Mit Erhöhung der Temperatur auf 60 °C kann eine im Verhältnis geringere Diffusions- als Reaktionsgeschwindigkeit beobachtet werden. Die Nebenreaktionen wurden mittels 13C-CP/MAS-NMR-spektroskopischen, elementaranlaytischen Untersuchungen sowie Doppelbrechungsmessungen charakterisiert. Während der alkalischen Esterhydrolyse beginnt die Reduzierung der Nitrilgruppen unter der Bildung von primären Carbonsäureamiden und Carbonsäuren. Zur Beschreibung dieser Umsetzung wurde eine Methode entwickelt, welche die Addition von 13C-CP/MAS-NMR-Spektren der Modellsubstanzen PAN, PAM und PAA beinhaltet. Weitere stattfindende Reaktionen sind die Bildung von konjugierten Doppelbindungen, welche insbesondere auf eine Zyklisierung der Nitrile hinweisen. Die nasschemisch initiierte Zyklisierung der Nitrilgruppen kann zu kürzeren Stabilisierungszeiten und einem besser kontrollierbaren Stabilisierungsprozess durch geringere Wärmefreisetzung und schlussendlich zu einer Kostenersparnis des gesamten Verfahrens führen. Die Umsetzung der Nitrilgruppen konnte mit einer Reaktion pseudo 1. Ordnung gut abgebildet werden. DMSO initiiert die Esterhydrolyse, wobei die KOH-Konzentration einen höheren Einfluss auf die Reaktionsgeschwindigkeit der Ester- und Nitrilhydrolyse als die DMSO-Konzentration besitzt. Beide Reaktionen zeigen eine vergleichbare Abhängigkeit von der Temperatur. Die Erhöhung der Prästabilisierungszeit und der KOH- bzw. DMSO-Konzentration führt zur Migration niedermolekularer Bestandteile des Fasermaterials an die Oberfläche und der Bildung punktueller Ablagerungen bis hin zu miteinander verbundenen Einzelfasern. Eine weitere Erhöhung der Prästabilisierungszeit bzw. der Konzentration führt zu einem steigenden Carbonsäureanteil und zur Quellung des Fasermaterials, wodurch die Ablagerungen in das Reaktionsmedium diffundieren. Die Ablagerungen enthalten Chlor, welches durch den Waschvorgang mit HCl in das Materialsystem gelangt ist und durch Parameteranpassungen reduziert wurde. Die schmelzbaren Fasern konnten durch die Prästabilisierung erfolgreich über eine Kern-Mantel-Struktur in nicht-thermoplastische Fasern überführt werden. Zur Ermittlung eines geeigneten Prozessfensters für nachfolgende thermische Beanspruchungen der prästabilisierten Fasern wurden drei Kriterien identifiziert, anhand welcher die Evaluation erfolgte. Das erste Kriterium beinhaltet die Notwendigkeit der vollständigen Aufhebung der thermoplastischen Eigenschaft der Fasern. Als zweites Kriterium diente die Fasermorphologie. Anhand von REM-Aufnahmen wurden Faserbündel mit separierten Einzelfasern ohne Ablagerungen für die nachfolgende Stabilisierung ausgewählt. Das dritte Kriterium bezieht sich auf eine möglichst geringe Umsetzung der Nitrilgruppen, um Prästabilisierungsbedingungen mit Nebenreaktionen zu vermeiden. Aus den Untersuchungen konnte eine Prästabilisierungstemperatur von 60 °C als geeignet identifiziert werden. Weiterhin führen hoch alkalische Zusammensetzungen des Reaktionsmediums mit KOH-Konzentrationen von 1, 1,5 und 2 M, vorzugsweise 1,5 M und 50 vol% DMSO mit Reaktionszeiten von unter 10 min zu geeigneten Fasern. Ein MEA-Anteil unterhalb von 2 mol% bewirkt eine Überführung in die Unschmelzbarkeit. Thermisch stabile und für die nachfolgende Stabilisierung geeignete Fasern besitzen weiterhin 68 – 80 mol% Nitrilgruppen, 20 – 25 mol% Carbonsäuren, bis zu 15 mol% primäre Carbonsäureamide und zyklisierte Strukturen. N2 - Carbon fibers have been established in the aerospace industry and gain more importance for daily applications such as in the automotive, wind power or sport sector because of their high tensile strength, high modulus and low density. The high costs of carbon fibers arises from the precursor synthesis and especially from the precursor spinning using wet-spinning, which leads to an increasing interest in alternative and in meltspinable materials as precursors. Polyacrylonitrile (PAN) is used as precursor for carbon fiber manufacture and shows irreversible exothermic cyclic reactions before melting, followed by its decomposition. One possibility to decrease its melting temperature is the use of co-monomers increasing the free volume und reducing the intermolecular interactions acting as internal plasticizers. The Fraunhofer IAP developed a meltspinable PAN-based material with 2-methoxyethylacrylate as co-monomer resulting in new PAN-co-MEA precursor fibers. To use the PAN-co-MEA precursor for carbon fiber production, the thermoplastic fibers have to be converted into non-meltable ones. Therefor a new process step was included named prestabilization, which leads to a scission of the co-monomer side chain. The specific timescale and kinetics of the new process step of prestabilization under alkaline conditions as well as the side reactions are still unclear. Furthermore, a specific parameter set for prestabilization is needed. For this, the prestabilization was converted into laboratory scale. The reaction medium consists of DMSO and a KOH solution, which were varied in concentration to determine a suitable composition of the reaction medium. Further varied parameters were the reaction time with a maximum of 30 min and a temperature of 40, 50 and 60 °C. The chemical structure changes were primarily determined via NMR spectroscopy. For the study of the alkaline ester hydrolysis of the co-monomer resulting in the cleavage of the side chain, 1H-NMR spectroscopic analysis was used. For the chemical and physical structure changes during the prestabilization a model was proposed. The first reaction is the ester hydrolysis from fiber edge to interior initiated by the superbase composed of DMSO and KOH solution. The chronological sequence of MEA reduction can be subdivided in three areas. The first area from the beginning of prestabilization is characterized by the diffusion of the basic anions in the fiber. In the second area the reaction of the ester hydrolysis takes place which can be fitted in this area by a reaction of pseudo 1. order. The third area is characterized by reaction of the last co-monomers and the diffusion of the products out of the fiber. At 50 °C compared to the reaction, the diffusion of the anions into the fiber is a secondary effect. An increase in temperature to 60 °C shifts the diffusion/reaction balance to a higher reaction velocity. The side reactions were detected via 13C-CP/MAS-NMR spectroscopy, elemental analysis and measurements of the birefringence. During the alkaline ester hydrolysis, the nitrile groups reacted to primary carbon acid amides and afterwards to carbon acids. This reaction path was described via a new developed technique consisting of the addition of 13C-CP/MAS-NMR spectra of model substances PAN, PAM and PAA. Further side reactions were the generation of conjugated double bonds, which indicate cyclization. The wet-chemical initiated cyclization of the nitrile groups could lead to shorter stabilization times und a more controllable stabilization process because of less heat release and in the end it could lead to a less expensive process. The sum of overall nitrile reactions could be described with a reaction of pseudo 1. order. The ester hydrolysis is initiated because of the presence of DMSO but the reaction velocity of the ester hydrolysis and the hydrolysis of nitrile groups are more influenced by the KOH concentration than by the DMSO concentration. Both reactions show a similar dependence on temperature. Low-molecular weight components of the precursor migrate out of the fiber to the surface to form punctual deposits with increasing prestabilization time and concentration. These deposits contain chlorine from the washing process with HCl which was reduced with optimized parameters. Because of changed chemical structure with increasing carbon acids the fiber swells and leads to interconnected single fibers without deposits. The meltable fibers were successfully converted to non-meltable ones via a core-shell structure. To determine a suitable parameter set of the prestabilization for the subsequent thermal processing step of stabilization, three criteria were identified. The first necessary criterion denotes the thermal stability of the fibers. The second criterion is an unchanged or insignificant changed fiber morphology, respectively. Via the evaluation of SEM images fiber morphologies without deposits and without interconnected single fibers were chosen for a suitable parameter set for subsequent stabilization. The third criterion was a low conversion of the nitrile groups to have precursors with low amount of side reactions. The investigations lead to a temperature for prestabilization of 60 °C. Furthermore, reaction media with a high alkaline content of 1, 1.5 and 2 M KOH, especially 1.5 M KOH, with 50 vol% DMSO and reaction times of less than 10 min result in suitable fibers. The MEA content should be less than 2 mol% to convert the meltable in non-meltable fibers. Thermal stable and for the stabilization suitable fibers also contain 68 – 80 mol% nitrile groups, 20 - 25 mol% carbon acids, up to 15 mol% primary carbon acid amides and cyclic structures. KW - Carbonfaser Herstellung KW - carbon fiber manufacture KW - Prästabilisierung KW - Hydrolyse KW - PAN KW - Precursor KW - NMR KW - prestabilization KW - hydrolysis KW - PAN KW - precursor KW - NMR Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469301 ER - TY - JOUR A1 - Socquet, Anne A1 - Valdes, Jesus Pina A1 - Jara, Jorge A1 - Cotton, Fabrice Pierre A1 - Walpersdorf, Andrea A1 - Cotte, Nathalie A1 - von Specht, Sebastian A1 - Ortega-Culaciati, Francisco A1 - Carrizo, Daniel A1 - Norabuena, Edmundo T1 - An 8month slow slip event triggers progressive nucleation of the 2014 Chile megathrust JF - Geophysical research letters N2 - The mechanisms leading to large earthquakes are poorly understood and documented. Here we characterize the long-term precursory phase of the 1 April 2014 M(w)8.1 North Chile megathrust. We show that a group of coastal GPS stations accelerated westward 8months before the main shock, corresponding to a M(w)6.5 slow slip event on the subduction interface, 80% of which was aseismic. Concurrent interface foreshocks underwent a diminution of their radiation at high frequency, as shown by the temporal evolution of Fourier spectra and residuals with respect to ground motions predicted by recent subduction models. Such ground motions change suggests that in response to the slow sliding of the subduction interface, seismic ruptures are progressively becoming smoother and/or slower. The gradual propagation of seismic ruptures beyond seismic asperities into surrounding metastable areas could explain these observations and might be the precursory mechanism eventually leading to the main shock. KW - seismology KW - GPS KW - subduction KW - precursor Y1 - 2017 U6 - https://doi.org/10.1002/2017GL073023 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 4046 EP - 4053 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Knoop, Mats Timothy T1 - Neue Polyacrylnitril-basierte, schmelzspinnbare Präkursoren für Carbonfasern N2 - Diese Arbeit zu Grunde liegenden Forschung zielte darauf ab, neue schmelzbare Acrylnitril-Copolymere zu entwickeln. Diese sollten im Anschluss über ein Schmelzspinnverfahren zur Chemiefaser geformt und im letzten Schritt zur Carbonfaser konvertiert werden. Zu diesem Zweck wurden zunächst orientierende Untersuchungen an unterschiedlichen Copolymeren des Acrylnitril aus Lösungspolymerisation durchgeführt. Die Untersuchungen zeigten, dass elektrostatische Wechselwirkungen besser als sterische Abschirmung dazu geeignet sind, Schmelzbarkeit unterhalb der Zersetzungstemperatur von Polyacrylnitril zu bewirken. Aus der Vielzahl untersuchter Copolymere stellten sich jene mit Methoxyethylacrylat (MEA) als am effektivsten heraus. Für diese Copolymere wurden sowohl die Copolymerisationsparameter bestimmt als auch die grundlegende Kinetik der Lösungspolymerisation untersucht. Die Copolymere mit MEA wurden über Schmelzspinnen zur Faser umgeformt und diese dann untersucht. Hierbei wurden auch Einflüsse verschiedener Parameter, wie z.B. die der Molmasse, auf die Fasereigenschaften und -herstellung untersucht. Zuletzt wurde ein Heterophasenpolymerisationsverfahren zur Herstellung von Copolymeren aus AN/MEA entwickelt; dadurch konnten die Materialeigenschaften weiter verbessert werden. Zur Unterdrückung der thermoplastischen Eigenschaften der Fasern wurde ein geeignetes Verfahren entwickelt und anschließend die Konversion zu Carbonfasern durchgeführt. N2 - The aim of this work was to develop new meltable acrylonitrile co-polymers. Those should be processed into a fiber via melt-spinning, and finally be converted into carbon fibers. Various co-polymers of acrylonitrile were synthesized by solution polymerization. The investigations showed that electrostatic interactions are more effective than steric shielding for achieving meltability of co-polymers of acrylonitrile. Out of the wide range of co-polymers prepared, those with the co-monomer methoxyethylacrylate were the most effective ones. For these co-polymers copolymerization parameters and basic kinetics were investigated. The co-polymers were processed into fibers via melt-spinning. The influence of various parameters such as molar mass on the process and the mechanical properties of the fibers was studied. Subsequently, a new emulsion polymerization process for the synthesis of the co-polymers was developed, resulting in further improved material properties. Finally a process for deactivation of thermoplasticity by chemical treatment was developed. T2 - Novel meltable polyacrylonitrile precursor for carbon fibres KW - schmelzbares PAN KW - PAN Emulsionspolymerisation KW - meltable PAN KW - Carbonfaserprecursor KW - carbon fibre KW - precursor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103972 ER - TY - THES A1 - Jiang, Yuan T1 - Precursor phases in non-classical crystallization N2 - The main objective of this thesis is to understand molecular crystallization as a multistep process with or without polymeric additives, including transient liquid-liquid phase separation, nanocrystal nucleation within the dense phase, and subsequent nanocrystal self-assembly or self-organization in sequence. The thesis starts with a quaternary model system, containing DL-Glutamic acid (Glu), polyethyleneimine (PEI), water, and EtOH, for the understanding of multistep precipitation of Glu with PEI as an additive. The experiments were performed by mixing Glu-PEI aqueous solution with a non-solvent EtOH. First, the phase diagram of the quaternary system is determined, obtaining precipitate, coacervates, or homogeneous mixtures by varying Glu/PEI w/w and water/EtOH v/v. Coacervation is observed to occur over a wide range of Glu/PEI with various volumes. The composition of coacervates is conveniently characterized by nuclear magnetic resonance spectroscopy. The observed coacervates are thermodynamically stable phases rich in solute, which is different from metastable polymer-induced liquid precursors. The combination of atomic force microscopy, small angle scattering, and ξ-potential measurements confirms the coexistence of monomers and Glu/PEI complexes and the aggregation of complexes in Glu-PEI-water systems. This suggests that there might be a direct structural transformation between the Glu-PEI complexes in aqueous solution and the metastable liquid precursors in a water-EtOH mixture. The multistep mechanism of Glu precipitation with PEI as an additive is investigated thereafter. The combination of stopped flow and small angle scattering demonstrates that the initially formed liquid precursors pass through an alteration of growth and coalescence. Combined with results from optical microscopy and scanning electron microscopy, the nucleation of nanoplatelets happens within each liquid precursor droplet, and nanoplatelets reorient themselves and self-organize into a radial orientation in the crystalline microspheres. The recipe was then extended to the precipitation of organics in other oppositely charged amino acid-polyelectrolyte systems. After the success in preparing hierarchical microspheres in solution, the similar recipe can be extended to the preparation of patterned thin films on substrate. By dipping a quaternary DL-Lys·HCl (Lys)–polyacrylic acid (PAA)–water–EtOH dispersion on a hydrophilic slide, the fast evaporation process of the volatile solvent EtOH is responsible for the homogeneous nucleation of NPs. Then, the following complete evaporation causes the mesocrystallization of a continuous spherulitic thin film along the receding line of the liquid, which again transforms into a mesocrystalline thin film. Furthermore, annealing is used to optimize the property of mesocrystalline thin films. As evaporation is a non-equilibrium process, it can be used to tune the kinetics of crystallization. Therefore, hierarchical or periodical thin films are obtainable by starting the evaporation from microspheres recrystallization, obtaining mesocrystalline thin films with 4 hierarchy levels. The results reveal that evaporation provides an easy but effective way for the formation of patterned structures via the positioning of NPs after their fast nucleation, resulting in different kinds of patterns by controlling the concentration of NPs, solvent evaporation rate, and other physical forces. Non-classical crystallization is not limited to crystallizations with polymeric additives. We also observed the nucleation and growth of a new molecular layer on the growing DL-Glu·H2O crystals from a supersaturated mother liquor by using an in-situ atomic force microscopy (AFM), where the nucleation and growth of a molecular layer proceed via amorphous nanoparticle (NP) attachment and relaxation process before the observation of the growth of a newly formed molecular layer. NP attachment to the crystal surface is too fast to observe by using in-situ AFM. The height shrinkage of NPs, combined to the structural transformation from 3D amorphous NPs to 2D crystalline layer, is observed during the relaxation process. The nucleation and growth of a newly formed molecular layer from NP relaxation is contradictory to the classical nucleation theory, which hypothesizes that nuclei show the same crystallographic properties as a bulk crystal. The formation of a molecular layer by NP attachment and relaxation rather than attachment of single molecules provides a different picture from the currently held classical nucleation and growth theory regarding the growth of single crystals from solution. N2 - Das Hauptziel dieser Arbeit ist das Verständnis der molekularen Kristallisation, sowohl mit als auch ohne polymere Additive, als einen mehrstufigen Prozess. Dieser beinhaltet eine transiente flüssig-flüssig Phasentrennung, die Nukleation von Nanokristallen in der dichten flüssigen Precursor-Phase so wie eine anschließende nanokristalline Selbstorganisation. Die Arbeit beginnt mit Untersuchungen an einem quaternären Modelsystem bestehend aus DL-Glutamat (Glu), Polyethylenimin (PEI), Wasser und Ethanol. Das Phasendiagramm dieses quaternären Systems wird durch Variation der Glu/PEI w/w und Wasser/EtOH v/v Verhältnisse bestimmt, wobei Präzpitat aus polymerinduzierten flüssigen Precursor, Koazervate oder homogene Mischungen erhalten werden Das thermodynamisch stabile Koazervat kann als Referenz für das Verständnis von flüssigen Precursorn angesehen werden, welche in der Natur metastabil und transient sind. Der mehrstufige Mechanismus der Glu-Präzipitation mit PEI als Additiv wird dann mittels Neutronen Kleinwinkelstreuung untersucht. Dies zeigt, dass die ursprünglich gebildeten flüssigen Precursor noch vor der Nukleation von Nanokristallen einen Wechsel von Wachstum und Koaleszenz durchlaufen. Die Ergebnisse aus optischer- und Eletronenmikroskopie zeigen, dass sowohl die flüssigen Precursor Superstrukturen ausbilden als auch, dass die Nukleation von Nanoplättchen in jedem einzelnen Precursor Tropfen von statten geht. Dies geschieht noch bevor sich die Nanoplättchen selbst in einer radialen Orientierung ausrichten. Diese Studie liefert die Kinetik der Präzipitation von organischen Stoffen in Gegenwart von polymeren Additiven. Eine ähnliche Vorgehensweise wie für die Herstellung von Mikrokügelchen kann für die Darstellung von gemusterten Filmen angewandt werden. Die homogene Nukleation von Nanopartikeln (NPs) findet während der Verdampfung einer quarternären DL-Lys·HCl-Polyacrylsäure-Wasser-Ethanol Dispersion auf einer hydrophilen Oberfläche statt. Die darauffolgende vollständige Verdampfung löst die Mesokristallisation eines kontinuierlichen sphärolithischen dünnen Films aus, welcher sich wiederum in einen mesokristallinen dünnen Film umwandelt. Mesokristalline Filme mit 4 Hierarchiestufen bzw. auch periodische Filme werden durch die Verdampfung der Mikrokügelchen-Dispersion erhalten. Die Ergebnisse zeigen, dass die Verdampfung eine einfache aber effektive Methode zur Herstellung von verschieden gemusterten hierarchischen Filmen darstellt. Nicht-klassische Kristallisation wird auch in der Abwesenheit von polymeren Additiven beobachtet. Wir verfolgen mittels Rasterkraftmikroskop (AFM) die Nukleation und das Wachstum einer neuen molekularen Schicht auf wachsenden DL-Glu·H2O Kristallen aus übersättigter Mutterlauge. Die Bildung einer neuen molekularen Schicht verläuft durch die Anlagerung von amorphen Nanopartikeln. Das Schrumpfen der NPs zusammen mit der strukturellen Änderung von dreidimensionalen NPs zu 2D Schichten wird während dieses Relaxationsprozesses beobachtet. Schließlich kommt es zu der Ausbildung einer neuen molekularen Schicht. Die Bildung einer molekularen Schicht durch die Anlagerung von Nanopartikeln aus der Lösung und die darauffolgende Relaxation liefert ein abweichendes Bild zu der bisher gängigen klassischen Theorie des Kristallwachstums. T2 - Vorstufenphasen in nichtklassischer Kristallisation KW - Mesokristall KW - Vorstufe KW - Kristallisation KW - mesocrystal KW - precursor KW - crystallization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52460 ER -