TY - JOUR A1 - Coesfeld, Jacqueline A1 - Kuester, Theres A1 - Kuechly, Helga U. A1 - Kyba, Christopher C. M. T1 - Reducing variability and removing natural light from nighttime satellite imagery: A case study using the VIIRS DNB JF - Sensors N2 - Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application. KW - airglow KW - artificial light KW - calibration KW - VIIRS DNB KW - nightlights KW - remote sensing Y1 - 2020 VL - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Coesfeld, Jacqueline A1 - Anderson, Sharolyn J. A1 - Baugh, Kimberly A1 - Elvidge, Christopher D. A1 - Schernthanner, Harald A1 - Kyba, Christopher C. M. T1 - Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images JF - Remote sensing N2 - With the growing size and use of night light time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night light data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g., airports and prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15-20% of the mean. Greenhouses and flares, however, are not stable sources. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes. KW - artificial light at night KW - light pollution KW - night lights KW - VIIRS DNB Y1 - 2018 U6 - https://doi.org/10.3390/rs10121964 SN - 2072-4292 VL - 10 IS - 12 PB - MDPI CY - Basel ER -