TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Kreuzer, Alex A1 - Behrens, Karsten A1 - Schütz, Gisela A1 - Holdt, Hans-Jürgen A1 - Hirscher, Michael T1 - Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 angstrom for IFP-1, 3.1 angstrom for IFP-3) and smaller (2.1 angstrom for IFP-7, 1.7 angstrom for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H-2 or D-2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H-2/D-2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S approximate to 2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity. KW - gas adsorption KW - hydrogen isotopes KW - isotope separation KW - metal-organic frameworks KW - quantum sieving Y1 - 2019 U6 - https://doi.org/10.1002/cphc.201900183 SN - 1439-4235 SN - 1439-7641 VL - 20 IS - 10 SP - 1311 EP - 1315 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Walczak, Ralf T1 - Molecular design of nitrogen-doped nanoporous noble carbon materials for gas adsorption T1 - Molekulares Design Stickstoffdotierter, Nanoporöser, und Edler Kohlenstoffmaterialien für Gasadsorption N2 - In den modernen Gesellschaften führt ein stetig steigender Energiebedarf zu dem zunehmenden Verbrauch fossiler Brennstoffe wie Kohle, Öl, und Gas. Die Verbrennung dieser kohlenstoffbasierten Brennstoffe führt unweigerlich zur Freisetzung von Treibhausgasen, vor allem von CO2. Die CO2 Aufnahme unmittelbar bei den Verbrennungsanlagen oder direkt aus der Luft, zusammen mit Regulierung von CO2 produzierenden Energiesektoren (z.B. Kühlanlagen), können den CO2 Ausstoß reduzieren. Allerdings führen insbesondere bei der CO2 Aufnahme die geringen CO2 Konzentrationen und die Aufnahme konkurrierender Gase zu niedrigen CO2 Kapazitäten und Selektivitäten. Das Zusammenspiel der Gastmoleküle mit porösen Materialien ist dabei essentiell. Poröse Kohlenstoffmaterialien besitzen attraktive Eigenschaften, unter anderem elektrische Leitfähigkeit, einstellbare Porosität, als auch chemische und thermische Stabilität. Allerdings führt die zu geringe Polarisierbarkeit dieser Materialien zu einer geringen Affinität zu polaren Molekülen (z.B. CO2, H2O, oder NH3). Diese Affinität kann durch den Einbau von Stickstoff erhöht werden. Solche Materialien sind oft „edler“ als reine Kohlenstoffe, dies bedeutet, dass sie eher oxidierend wirken, als selbst oxidiert zu werden. Die Problematik besteht darin, einen hohen und gleichmäßig verteilten Stickstoffgehalt in das Kohlenstoffgerüst einzubauen. Die Zielsetzung dieser Dissertation ist die Erforschung neuer Synthesewege für stickstoffdotierte edle Kohlenstoffmaterialien und die Entwicklung eines grundlegenden Verständnisses für deren Anwendung in Gasadsorption und elektrochemischer Energiespeicherung. Es wurde eine templatfreie Synthese für stickstoffreiche, edle, und mikroporöse Kohlenstoffmaterialien durch direkte Kondensation eines stickstoffreichen organischen Moleküls als Vorläufer erarbeitet. Dadurch konnten Materialien mit hohen Adsorptionskapazitäten für H2O und CO2 bei niedrigen Konzentrationen und moderate CO2/N2 Selektivitäten erzielt werden. Um die CO2/N2 Selektivitäten zu verbessern, wurden mittels der Einstellung des Kondensationsgrades die molekulare Struktur und Porosität der Kohlenstoffmaterialien kontrolliert. Diese Materialien besitzen die Eigenschaften eines molekularen Siebs für CO2 über N2, das zu herausragenden CO2/N2 Selektivitäten führt. Der ultrahydrophile Charakter der Porenoberflächen und die kleinen Mikroporen dieser Kohlenstoffmaterialien ermöglichen grundlegende Untersuchungen für die Wechselwirkungen mit Molekülen die polarer sind als CO2, nämlich H2O und NH3. Eine weitere Reihe stickstoffdotierter Kohlenstoffmaterialien wurde durch Kondensation eines konjugierten mikroporösen Polymers synthetisiert und deren strukturelle Besonderheiten als Anodenmaterial für die Natriumionen Batterie untersucht. Diese Dissertation leistet einen Beitrag zur Erforschung stickstoffdotierter Kohlenstoffmaterialien und deren Wechselwirkungen mit verschiedenen Gastmolekülen. N2 - The growing energy demand of the modern economies leads to the increased consumption of fossil fuels in form of coal, oil, and natural gases, as the mains sources. The combustion of these carbon-based fossil fuels is inevitably producing greenhouse gases, especially CO2. Approaches to tackle the CO2 problem are to capture it from the combustion sources or directly from air, as well as to avoid CO2 production in energy consuming sources (e.g., in the refrigeration sector). In the former, relatively low CO2 concentrations and competitive adsorption of other gases is often leading to low CO2 capacities and selectivities. In both approaches, the interaction of gas molecules with porous materials plays a key role. Porous carbon materials possess unique properties including electric conductivity, tunable porosity, as well as thermal and chemical stability. Nevertheless, pristine carbon materials offer weak polarity and thus low CO2 affinity. This can be overcome by nitrogen doping, which enhances the affinity of carbon materials towards acidic or polar guest molecules (e.g., CO2, H2O, or NH3). In contrast to heteroatom-free materials, such carbon materials are in most cases “noble”, that is, they oxidize other matter rather than being oxidized due to the very positive working potential of their electrons. The challenging task here is to achieve homogenous distribution of significant nitrogen content with similar bonding motives throughout the carbon framework and a uniform pore size/distribution to maximize host-guest interactions. The aim of this thesis is the development of novel synthesis pathways towards nitrogen-doped nanoporous noble carbon materials with precise design on a molecular level and understanding of their structure-related performance in energy and environmental applications, namely gas adsorption and electrochemical energy storage. A template-free synthesis approach towards nitrogen-doped noble microporous carbon materials with high pyrazinic nitrogen content and C2N-type stoichiometry was established via thermal condensation of a hexaazatriphenylene derivative. The materials exhibited high uptake of guest molecules, such as H2O and CO2 at low concentrations, as well as moderate CO2/N2 selectivities. In the following step, the CO2/N2 selectivity was enhanced towards molecular sieving of CO2 via kinetic size exclusion of N2. The precise control over the condensation degree, and thus, atomic construction and porosity of the resulting materials led to remarkable CO2/N2 selectivities, CO2 capacities, and heat of CO2 adsorption. The ultrahydrophilic nature of the pore walls and the narrow microporosity of these carbon materials served as ideal basis for the investigation of interface effects with more polar guest molecules than CO2, namely H2O and NH3. H2O vapor physisorption measurements, as well as NH3-temperature programmed desorption and thermal response measurements showed exceptionally high affinity towards H2O vapor and NH3 gas. Another series of nitrogen-doped carbon materials was synthesized by direct condensation of a pyrazine-fused conjugated microporous polymer and their structure-related performance in electrochemical energy storage, namely as anode materials for sodium-ion battery, was investigated. All in all, the findings in this thesis exemplify the value of molecularly designed nitrogen-doped carbon materials with remarkable heteroatom content implemented as well-defined structure motives. The simultaneous adjustment of the porosity renders these materials suitable candidates for fundamental studies about the interactions between nitrogen-doped carbon materials and different guest species. KW - carbon materials KW - nitrogen-doped KW - gas adsorption KW - porosity KW - Porösität KW - Gasadsorption KW - Stickstoffdotiert KW - Kohlenstoffmaterialien Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435241 ER - TY - THES A1 - Youk, Sol T1 - Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage N2 - The world energy consumption has constantly increased every year due to economic development and population growth. This inevitably caused vast amount of CO2 emission, and the CO2 concentration in the atmosphere keeps increasing with economic growth. To reduce CO2 emission, various methods have been developed but there are still many bottlenecks to be solved. Solvents easily absorbing CO2 such as monoethanol-amine (MEA) and diethanolamine, for example, have limitations of solvent loss, amine degradation, vulnerability to heat and toxicity, and the high cost of regeneration which is especially caused due to chemisorption process. Though some of these drawbacks can be compensated through physisorption with zeolites and metal-organic frameworks (MOFs) by displaying significant adsorption selectivity and capacity even in ambient conditions, limitations for these materials still exist. Zeolites demand relatively high regeneration energy and have limited adsorption kinetics due to the exceptionally narrow pore structure. MOFs have low stability against heat and moisture and high manufacturing cost. Nanoporous carbons have recently received attention as an attractive functional porous material due to their unique properties. These materials are crucial in many applications of modern science and industry such as water and air purification, catalysis, gas separation, and energy storage/conversion due to their high chemical and thermal stability, and in particular electronic conductivity in combination with high specific surface areas. Nanoporous carbons can be used to adsorb environmental pollutants or small gas molecules such as CO2 and to power electrochemical energy storage devices such as batteries and fuel cells. In all fields, their pore structure or electrical properties can be modified depending on their purposes. This thesis provides an in-depth look at novel nanoporous carbons from the synthetic and the application point of view. The interplay between pore structure, atomic construction, and the adsorption properties of nanoporous carbon materials are investigated. Novel nanoporous carbon materials are synthesized by using simple precursor molecules containing heteroatoms through a facile templating method. The affinity, and in turn the adsorption capacity, of carbon materials toward polar gas molecules (CO2 and H2O) is enhanced by the modification of their chemical construction. It is also shown that these properties are important in electrochemical energy storage, here especially for supercapacitors with aqueous electrolytes which are basically based on the physisorption of ions on carbon surfaces. This shows that nanoporous carbons can be a “functional” material with specific physical or chemical interactions with guest species just like zeolites and MOFs. The synthesis of sp2-conjugated materials with high heteroatom content from a mixture of citrazinic acid and melamine in which heteroatoms are already bonded in specific motives is illustrated. By controlling the removal procedure of the salt-template and the condensation temperature, the role of salts in the formation of porosity and as coordination sites for the stabilization of heteroatoms is proven. A high amount of nitrogen of up to 20 wt. %, oxygen contents of up to 19 wt.%, and a high CO2/N2 selectivity with maximum CO2 uptake at 273 K of 5.31 mmol g–1 are achieved. Besides, the further controlled thermal condensation of precursor molecules and advanced functional properties on applications of the synthesized porous carbons are described. The materials have different porosity and atomic construction exhibiting a high nitrogen content up to 25 wt. % as well as a high porosity with a specific surface area of more than 1800 m2 g−1, and a high performance in selective CO2 gas adsorption of 62.7. These pore structure as well as properties of surface affect to water adsorption with a remarkably high Qst of over 100 kJ mol−1 even higher than that of zeolites or CaCl2 well known as adsorbents. In addition to that, the pore structure of HAT-CN-derived carbon materials during condensation in vacuum is fundamentally understood which is essential to maximize the utilization of porous system in materials showing significant difference in their pore volume of 0.5 cm3 g−1 and 0.25 cm3 g−1 without and with vacuum, respectively. The molecular designs of heteroatom containing porous carbon derived from abundant and simple molecules are introduced in the presented thesis. Abundant precursors that already containing high amount of nitrogen or oxygen are beneficial to achieve enhanced interaction with adsorptives. The physical and chemical properties of these heteroatom-doped porous carbons are affected by mainly two parameters, that is, the porosity from the pore structure and the polarity from the atomic composition on the surface. In other words, controlling the porosity as well as the polarity of the carbon materials is studied to understand interactions with different guest species which is a fundamental knowledge for the utilization on various applications. N2 - Nanoporöse Kohlenstoffe haben in letzter Zeit aufgrund ihrer einzigartigen Eigenschaften als ein attraktives funktionelles poröses Material Aufmerksamkeit erregt. Diese Materialien sind aufgrund ihrer hohen chemischen und thermischen Stabilität und insbesondere aufgrund ihrer elektronischen Leitfähigkeit in Kombination mit hohen spezifischen Oberflächen von entscheidender Bedeutung für viele Anwendungen der modernen Wissenschaft und Industrie wie Wasser- und Luftreinigung, Katalyse, Gastrennung und Energiespeicherung/-umwandlung. Nanoporöse Kohlenstoffe können verwendet werden, um Umweltschadstoffe oder kleine Gasmoleküle wie CO2 zu adsorbieren und elektrochemische Energiespeicher wie Batterien und Brennstoffzellen anzutreiben. Ihre Porenstruktur oder ihre elektrischen Eigenschaften je nach Einsatzzweck modifiziert werden. Diese Arbeit bietet einen eingehenden Blick auf neuartige nanoporöse Kohlenstoffe aus synthetischer und anwendungstechnischer Sicht. Das Zusammenspiel zwischen Porenstruktur, atomarem Aufbau und den Adsorptionseigenschaften von nanoporösen Kohlenstoffmaterialien wird untersucht. Neuartige nanoporöse Kohlenstoffmaterialien werden unter Verwendung einfacher Vorläufermoleküle, die Heteroatome enthalten, durch ein einfaches Templatverfahren synthetisiert. Die Affinität und damit die Adsorptionskapazität von Kohlenstoffmaterialien gegenüber polaren Gasmolekülen (CO2 und H2O) wird durch die Modifikation ihres chemischen Aufbaus erhöht. Es wird auch gezeigt, dass diese Eigenschaften bei der elektrochemischen Energiespeicherung wichtig sind. Hier insbesondere für Superkondensatoren mit wässrigen Elektrolyten, die grundsätzlich auf der Physisorption von Ionen an Kohlenstoffoberflächen beruhen. Dies zeigt, dass nanoporöse Kohlenstoffe, genauso wie Zeolithen und MOFs, ein „funktionelles“ Material mit spezifischen physikalischen oder chemischen Wechselwirkungen mit Gastspezien sein können. Mit den Vorteilen einer hohen elektrischen Leitfähigkeit, einer gut entwickelten Porenstruktur und einer stark hydrophilen Oberflächenstruktur sind nanoporöse Kohlenstoffe vielversprechende Materialien, die weitreichende Auswirkungen auf verschiedene Bereiche des zukünftigen Energiebedarfs haben. KW - porous carbon KW - gas adsorption KW - energy storage KW - N-doped carbon KW - poröser Kohlenstoff KW - Gasadsorption KW - Energiespeicher KW - N-dotierter Kohlenstoff Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-539098 ER -