TY - JOUR A1 - Ehrig, Hartmut A1 - Golas, Ulrike A1 - Habel, Annegret A1 - Lambers, Leen A1 - Orejas, Fernando T1 - M-adhesive transformation systems with nested application conditions. Part 1: parallelism, concurrency and amalgamation JF - Mathematical structures in computer science : a journal in the applications of categorical, algebraic and geometric methods in computer science N2 - Nested application conditions generalise the well-known negative application conditions and are important for several application domains. In this paper, we present Local Church-Rosser, Parallelism, Concurrency and Amalgamation Theorems for rules with nested application conditions in the framework of M-adhesive categories, where M-adhesive categories are slightly more general than weak adhesive high-level replacement categories. Most of the proofs are based on the corresponding statements for rules without application conditions and two shift lemmas stating that nested application conditions can be shifted over morphisms and rules. Y1 - 2014 U6 - https://doi.org/10.1017/S0960129512000357 SN - 0960-1295 SN - 1469-8072 VL - 24 IS - 4 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Ehrig, Hartmut A1 - Golas, Ulrike A1 - Habel, Annegret A1 - Lambers, Leen A1 - Orejas, Fernando T1 - M-Adhesive Transformation Systems with Nested Application Conditions Part 2: Embedding, Critical Pairs and Local Confluence JF - Fundamenta informaticae N2 - Graph transformation systems have been studied extensively and applied to several areas of computer science like formal language theory, the modeling of databases, concurrent or distributed systems, and visual, logical, and functional programming. In most kinds of applications it is necessary to have the possibility of restricting the applicability of rules. This is usually done by means of application conditions. In this paper, we continue the work of extending the fundamental theory of graph transformation to the case where rules may use arbitrary (nested) application conditions. More precisely, we generalize the Embedding theorem, and we study how local confluence can be checked in this context. In particular, we define a new notion of critical pair which allows us to formulate and prove a Local Confluence Theorem for the general case of rules with nested application conditions. All our results are presented, not for a specific class of graphs, but for any arbitrary M-adhesive category, which means that our results apply to most kinds of graphical structures. We demonstrate our theory on the modeling of an elevator control by a typed graph transformation system with positive and negative application conditions. KW - M-adhesive transformation systems KW - M-adhesive categories KW - graph replacement categories KW - nested application conditions KW - embedding KW - critical pairs KW - local confluence Y1 - 2012 U6 - https://doi.org/10.3233/FI-2012-705 SN - 0169-2968 VL - 118 IS - 1-2 SP - 35 EP - 63 PB - IOS Press CY - Amsterdam ER - TY - GEN A1 - Ehrig, Hartmut A1 - Golas, Ulrike A1 - Habel, Annegret A1 - Lambers, Leen A1 - Orejas, Fernando T1 - M-adhesive transformation systems with nested application conditions BT - Part 1: parallelism, concurrency and amalgamation T2 - Postprints der Universität Potsdam : Digital Engineering Reihe N2 - Nested application conditions generalise the well-known negative application conditions and are important for several application domains. In this paper, we present Local Church-Rosser, Parallelism, Concurrency and Amalgamation Theorems for rules with nested application conditions in the framework of M-adhesive categories, where M-adhesive categories are slightly more general than weak adhesive high-level replacement categories. Most of the proofs are based on the corresponding statements for rules without application conditions and two shift lemmas stating that nested application conditions can be shifted over morphisms and rules. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 1 KW - level-replacement systems KW - graph-transformations KW - distributed systems KW - synchronization KW - confluence KW - categories KW - programs KW - grammars KW - model Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415651 IS - 001 ER - TY - JOUR A1 - Golas, Ulrike A1 - Lambers, Leen A1 - Ehrig, Hartmut A1 - Orejas, Fernando T1 - Attributed graph transformation with inheritance: Efficient conflict detection and local confluence analysis using abstract critical pairs JF - THEORETICAL COMPUTER SCIENCE N2 - Inheritance is an important and widely spread concept enabling the elegant expression of hierarchy in object-oriented software programs or models. It has been defined for graphs and graph transformations enhancing the applicability of this formal technique. Up to now, for the analysis of transformations with inheritance a flattening construction has been used, which yields all the well-known results for graph transformation but results in a large number of graphs and rules that have to be analyzed. In this paper, we introduce a new category of typed attributed graphs with inheritance. For the detection of conflicts between graph transformations on these graphs, the notion of abstract critical pairs is defined. This allows us to perform the analysis on polymorphic rules and transformations without the need for flattening, which significantly increases the efficiency of the analysis and eases the interpretation of the analysis results. The new main result is the Local Confluence Theorem for typed attributed graph transformation with inheritance using abstract critical pairs. All constructions and results are demonstrated on an example for the analysis of refactorings. (C) 2012 Elsevier B.V. All rights reserved. KW - Typed attributed graph transformation KW - Critical pair analysis KW - Inheritance KW - M-adhesive category with NACs Y1 - 2012 U6 - https://doi.org/10.1016/j.tcs.2012.01.032 SN - 0304-3975 VL - 424 SP - 46 EP - 68 PB - ELSEVIER SCIENCE BV CY - AMSTERDAM ER -