TY - JOUR A1 - Evans, Chris J. A1 - van Loon, Jacco Th. A1 - Hainich, Rainer A1 - Bailey, M. T1 - 2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds The north-eastern region of the Large Magellanic Cloud JF - Astronomy and astrophysics : an international weekly journal N2 - We present spectral classifications from optical spectroscopy of 263 massive stars in the north-eastern region of the Large Magellanic Cloud. The observed two-degree field includes the massive 30 Doradus star-forming region, the environs of SN1987A, and a number of star-forming complexes to the south of 30 Dor. These are the first classifications for the majority (203) of the stars and include eleven double-lined spectroscopic binaries. The sample also includes the first examples of early OC-type spectra (AA Omega 30 Dor 248 and 280), distinguished by the weakness of their nitrogen spectra and by C IV lambda 4658 emission. We propose that these stars have relatively unprocessed CNO abundances compared to morphologically normal O-type stars, indicative of an earlier evolutionary phase. From analysis of observations obtained on two consecutive nights, we present radial-velocity estimates for 233 stars, finding one apparent single-lined binary and nine (>3 sigma) outliers compared to the systemic velocity; the latter objects could be runaway stars or large-amplitude binary systems and further spectroscopy is required to investigate their nature. KW - Magellanic Clouds KW - stars: early-type KW - stars: fundamental parameters KW - open clusters and associations: general Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201525882 SN - 1432-0746 VL - 584 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Ingallinera, A. A1 - Leone, Francesco A1 - Phillips, N. M. A1 - Agliozzo, Claudia A1 - Todt, Helge Tobias A1 - Cerrigone, L. T1 - A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907 JF - Monthly notices of the Royal Astronomical Society N2 - We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907. KW - stars: chemically peculiar KW - stars: early-type KW - stars: individual: HR 5907 KW - stars: magnetic field KW - radio continuum: stars KW - X-rays: stars Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty244 SN - 0035-8711 SN - 1365-2966 VL - 476 IS - 1 SP - 562 EP - 579 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Corcoran, Michael F. A1 - Nichols, Joy S. A1 - Pablo, Herbert A1 - Shenar, Tomer A1 - Pollock, Andy M. T. A1 - Waldron, Wayne L. A1 - Moffat, Anthony F. J. A1 - Richardson, Noel D. A1 - Russell, Christopher M. P. A1 - Hamaguchi, Kenji A1 - Huenemoerder, David P. A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Naze, Yael A1 - Ignace, Richard A1 - Evans, Nancy Remage A1 - Lomax, Jamie R. A1 - Hoffman, Jennifer L. A1 - Gayley, Kenneth A1 - Owocki, Stanley P. A1 - Leutenegger, Maurice A1 - Gull, Theodore R. A1 - Hole, Karen Tabetha A1 - Lauer, Jennifer A1 - Iping, Rosina C. T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. I. Overview of thr X-Ray spectrum JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (delta Ori Aa1), delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual (Delta Ori) KW - stars: mass-loss KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/132 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Moffat, Anthony F. J. A1 - Corcoran, Michael A1 - Shenar, Tomer A1 - Benvenuto, Omar A1 - Fuller, Jim A1 - Naze, Yael A1 - Hoffman, Jennifer L. A1 - Miroshnichenko, Anatoly A1 - Apellaniz, Jesus Maiz A1 - Evans, Nancy A1 - Eversberg, Thomas A1 - Gayley, Ken A1 - Gull, Ted A1 - Hamaguchi, Kenji A1 - Hamann, Wolf-Rainer A1 - Henrichs, Huib A1 - Hole, Tabetha A1 - Ignace, Richard A1 - Iping, Rosina A1 - Lauer, Jennifer A1 - Leutenegger, Maurice A1 - Lomax, Jamie A1 - Nichols, Joy A1 - Oskinova, Lida A1 - Owocki, Stan A1 - Pollock, Andy A1 - Russell, Christopher M. P. A1 - Waldron, Wayne A1 - Buil, Christian A1 - Garrel, Thierry A1 - Graham, Keith A1 - Heathcote, Bernard A1 - Lemoult, Thierry A1 - Li, Dong A1 - Mauclaire, Benjamin A1 - Potter, Mike A1 - Ribeiro, Jose A1 - Matthews, Jaymie A1 - Cameron, Chris A1 - Guenther, David A1 - Kuschnig, Rainer A1 - Rowe, Jason A1 - Rucinski, Slavek A1 - Sasselov, Dimitar A1 - Weiss, Werner T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. III. Analysis of optical photometric (most) and spectroscopic (ground based) variations JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual (delta Ori A) KW - stars: mass-loss KW - stars: variables: general Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/134 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Shenar, Tomer A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Corcoran, Michael F. A1 - Moffat, Anthony F. J. A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Waldron, Wayne L. A1 - Huenemoerder, David P. A1 - Maiz Apellaniz, Jesus A1 - Nichols, Joy S. A1 - Todt, Helge Tobias A1 - Naze, Yael A1 - Hoffman, Jennifer L. A1 - Pollock, Andy M. T. A1 - Negueruela, Ignacio T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. IV. A multiwavelength, non-lte spectroscopic analysis JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system delta Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if delta Ori lies at about twice the Hipparcos distance, in the vicinity of the sigma-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be Delta V approximate to 2.(m)8. The inferred parameters suggest that the secondary is an early B-type dwarf (approximate to B1 V), while the tertiary is an early B-type subgiant (approximate to B0 IV). We find evidence for rapid turbulent velocities (similar to 200 km s(-1)) and wind inhomogeneities, partially optically thick, in the primary's wind. The bulk of the X-ray emission likely emerges from the primary's stellar wind (logL(X)/L-Bol approximate to -6.85), initiating close to the stellar surface at R-0 similar to 1.1 R-*. Accounting for clumping, the mass-loss rate of the primary is found to be log (M) over dot approximate to -6.4 (M-circle dot yr(-1))., which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual ([HD 36486]delta Ori A) KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/135 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Naze, Yael A1 - Oskinova, Lida A1 - Gosset, Eric T1 - A detailed x-ray investigation of zeta puppis - II. the variability on short and long timescales JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Stellar winds are a crucial component of massive stars, but their exact properties still remain uncertain. To shed some light on this subject, we have analyzed an exceptional set of X-ray observations of zeta Puppis, one of the closest and brightest massive stars. The sensitive light curves that were derived reveal two major results. On the one hand, a slow modulation of the X-ray flux (with a relative amplitude of up to 15% over 16 hr in the 0.3-4.0 keV band) is detected. Its characteristic timescale cannot be determined with precision, but amounts from one to several days. It could be related to corotating interaction regions, known to exist in zeta Puppis from UV observations. Hour-long changes, linked to flares or to the pulsation activity, are not observed in the last decade covered by the XMM observations; the 17 hr tentative period, previously reported in a ROSAT analysis, is not confirmed either and is thus transient, at best. On the other hand, short-term changes are surprisingly small (<1% relative amplitude for the total energy band). In fact, they are compatible solely with the presence of Poisson noise in the data. This surprisingly low level of short-term variability, in view of the embedded wind-shock origin, requires a very high fragmentation of the stellar wind, for both absorbing and emitting features (>10(5) parcels, comparing with a two-dimensional wind model). This is the first time that constraints have been placed on the number of clumps in an O-type star wind and from X-ray observations. KW - stars: early-type KW - stars: individual (zeta Pup) KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/763/2/143 SN - 0004-637X VL - 763 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Evans, C. J. A1 - Hainich, Rainer A1 - Oskinova, Lida A1 - Gallagher, J. S. A1 - Chu, Y.-H. A1 - Gruendl, R. A. A1 - Hamann, Wolf-Rainer A1 - Henault-Brunet, V. A1 - Todt, Helge Tobias T1 - A rare early-type star revealed in the wing of the small megellanic cloud JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Sk 183 is the visually brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption, which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46 +/- 2 kK, a low mass-loss rate of similar to 10(-7) M-circle dot yr(-1), and a spectroscopic mass of 46(-8)(+ 9) M-circle dot (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature (similar to 47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionizing photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula. KW - open clusters and associations: individual (NGC 602) KW - stars: early-type KW - stars: fundamental parameters KW - stars: individual (Sanduleak 183) Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/753/2/173 SN - 0004-637X VL - 753 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Ignace, Richard A1 - Oskinova, Lida A1 - Massa, D. T1 - A report on the X-ray properties of the tau Sco-like stars JF - Monthly notices of the Royal Astronomical Society N2 - An increasing number of OB stars have been shown to possess magnetic fields. Although the sample remains small, it is surprising that the magnetic and X-ray properties of these stars appear to be far less correlated than expected. This contradicts model predictions, which generally indicate that the X-rays from magnetic stars are harder and more luminous than their non-magnetic counterparts. Instead, the X-ray properties of magnetic OB stars are quite diverse. tau Sco is one example where the expectations are better met. This bright main-sequence, early B star has been studied extensively in a variety of wavebands. It has a surface magnetic field of around 500 G, and Zeeman Doppler tomography has revealed an unusual field configuration. Furthermore, tau Sco displays an unusually hard X-ray spectrum, much harder than similar, non-magnetic OB stars. In addition, the profiles of its UV P Cygni wind lines have long been known to possess a peculiar morphology. Recently, two stars, HD 66665 and HD 63425, whose spectral types and UV wind line profiles are similar to those of tau Sco, have also been determined to be magnetic. In the hope of establishing a magnetic field - X-ray connection for at least a subset of the magnetic stars, we obtained XMM-Newton European Photon Imaging Camera spectra of these two objects. Our results for HD 66665 are somewhat inconclusive. No especially strong hard component is detected; however, the number of source counts is insufficient to rule out hard emission. Longer exposure is needed to assess the nature of the X-rays from this star. On the other hand, we do find that HD 63425 has a substantial hard X-ray component, thereby bolstering its close similarity to tau Sco. KW - stars: early-type KW - stars: individual: HD 63425 KW - stars: individual: HD 66665 KW - stars: magnetic field KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1093/mnras/sts358 SN - 0035-8711 VL - 429 IS - 1 SP - 516 EP - 522 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Irrgang, Andreas A1 - Geier, Stephan A1 - Kreuzer, Simon A1 - Pelisoli, Ingrid Domingos A1 - Heber, Ulrich T1 - A stripped helium star in the potential black hole binary LB-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Context The recently claimed discovery of a massive (M-BH = 68(-13)(+11) M-circle dot) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution. Aims A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LSV +22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass. Methods To this end, we study the spectral energy distribution of LSV +22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe. Results Our analysis clearly shows that LSV +22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O. Moreover, the elements Mg, Al, Si, S, Ar, and Fe are systematically underabundant when compared to normal main-sequence B-type stars. We suggest that LSV +22 25 is a stripped helium star and discuss two possible formation scenarios. Combining our photometric and spectroscopic results with the Gaia parallax, we infer a stellar mass of 1.1 +/- 0.5 M-circle dot. Based on the binary system's mass function, this yields a minimum mass of 2-3 M-circle dot for the compact companion, which implies that it may not necessarily be a black hole but a massive neutron- or main sequence star. Conclusions The star LSV +22 25 has become famous for possibly having a very massive black hole companion. However, a closer look reveals that the star itself is a very intriguing object. Further investigations are necessary for complete characterization of this object. KW - stars: abundances KW - stars: chemically peculiar KW - stars: early-type KW - pulsars: individual: LS V+22 25 Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/201937343 SN - 0004-6361 SN - 1432-0746 VL - 633 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ignace, R. A1 - Hole, K. T. A1 - Oskinova, Lida A1 - Rotter, J. P. T1 - An X-Ray Study of Two B plus B Binaries: AH Cep and CW Cep JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8. days and 2.7. days, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B. stars. Chandra ACIS-I observations were obtained to determine X-ray luminosities. AH. Cep was detected with an unabsorbed X-ray luminosity at a 90% confidence interval of (9-33) x 10(30) erg s(-1), or (0.5-1.7) x 10(-7) L-Bol , relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW Cep was a surprising nondetection. For CW Cep, an upper limit was determined with L-X/L-Bol < 10(-8), again for the combined components. One difference between these two systems is that AH Cep is part of a multiple system. The X-rays from AH. Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH. Cep on the short orbital period of the inner B. stars. KW - stars: early-type KW - stars: individual (AH Cep, CW Cep) KW - stars: massive KW - stars: winds KW - outflows X-rays: binaries Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa93ea SN - 0004-637X SN - 1538-4357 VL - 850 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Gimenez-Garcia, Angel A1 - Torrejon, Jose Miguel A1 - Eikmann, Wiebke A1 - Martinez-Nunez, Silvia A1 - Oskinova, Lida A1 - Rodes-Roca, Jose Joaquin A1 - Bernabeu, Guillermo T1 - An XMM-Newton view of FeK alpha in high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeK alpha emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeK alpha in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeK alpha spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in gamma Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeK alpha is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeK alpha (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeK alpha is narrow (sigma(line) < 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V similar to 1000 km s(-1)). (6) The equivalent hydrogen column (N-H) directly correlates to the EW of FeK alpha, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object - wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor's wind in the FeK alpha emission and the absorption when the donor is a supergiant massive star. KW - surveys KW - X-rays: binaries KW - binaries: general KW - circumstellar matter KW - stars: winds, outflows KW - stars: early-type Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425004 SN - 0004-6361 SN - 1432-0746 VL - 576 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Steinke, Martin A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Sander, Andreas Alexander Christoph A1 - Liermann, A. A1 - Todt, Helge Tobias T1 - Analysis of the WN star WR102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Context. The massive Wolf-Rayet type star WR102c is located near the Quintuplet Cluster, one of the three massive star clusters in the Galactic centre region. Previous studies indicated that WR102c may have a dusty circumstellar nebula and is among the main ionising sources of the Sickle Nebula associated with the Quintuplet Cluster. Aims. The goals of our study are to derive the stellar parameters of WR102c from the analysis of its spectrum and to investigate its stellar and nebular environment. Methods. We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar spectra, and analysed them by means of stellar atmosphere models. Results. Our new analysis supersedes the results previously reported for WR102c. We significantly decrease its bolometric luminosity and hydrogen content. We detect four early OB type stars close to WR102c. These stars have radial velocities similar to that of WR102c. We suggest that together with WR102c these stars belong to a distinct star cluster with a total mass of similar to 1000 M-circle dot. We identify a new WR nebula around WR102c in the SINFONI map of the di ff use Br gamma emission and in the HST Pa ff images. The Br gamma line at di ff erent locations is not significantly broadened and similar to the width of nebular emission elsewhere in the H i i region around WR102c. Conclusions. The massive star WR102c located in the Galactic centre region resides in a star cluster containing additional early-type stars. The stellar parameters of WR102c are typical for hydrogen-free WN6 stars. We identify a nebula surrounding WR102c that has a morphology similar to other nebulae around hydrogen-free WR stars, and propose that the formation of this nebula is linked to interaction of the fast stellar wind with the matter ejected at a previous evolutionary stage of WR102c. KW - stars: early-type KW - stars: individual: WR 102c KW - stars: Wolf KW - Rayet KW - Galaxy: center KW - HII regions KW - infrared: stars Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527692 SN - 1432-0746 VL - 588 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Schöller, Markus A1 - Hubrig, Swetlana A1 - Fossati, L. A1 - Carroll, Thorsten Anthony A1 - Briquet, Maryline A1 - Oskinova, Lida A1 - Järvinen, S. A1 - Ilyin, Ilya A1 - Castro, N. A1 - Morel, T. A1 - Langer, N. A1 - Przybilla, N. A1 - Nieva, M. -F. A1 - Kholtygin, A. F. A1 - Sana, H. A1 - Herrero, A. A1 - Barba, R. H. A1 - de Koter, A. T1 - B fields in OB stars (BOB) BT - Concluding the FORS2 observing campaign JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. The B fields in OB stars (BOB) Collaboration is based on an ESO Large Programme to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. Methods. In the framework of this program, we carried out low-resolution spectropolarimetric observations of a large sample of massive stars using FORS2 installed at the ESO VLT 8m telescope. Results. We determined the magnetic field values with two completely independent reduction and analysis pipelines. Our in-depth study of the magnetic field measurements shows that differences between our two pipelines are usually well within 3 sigma errors. From the 32 observations of 28 OB stars, we were able to monitor the magnetic fields in CPD -57 degrees 3509 and HD164492C, confirm the magnetic field in HD54879, and detect a magnetic field in CPD -62 degrees 2124. We obtain a magnetic field detection rate of 6 +/- 3% for the full sample of 69 OB stars observed with FORS 2 within the BOB program. For the preselected objects with a nu sin i below 60 km s(-1), we obtain a magnetic field detection rate of 5 +/- 5%. We also discuss X-ray properties and multiplicity of the objects in our FORS2 sample with respect to the magnetic field detections. KW - polarization KW - stars: early-type KW - stars: magnetic field KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201628905 SN - 1432-0746 VL - 599 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Schoeller, Markus A1 - Fossati, Luca A1 - Morel, Thierry A1 - Castro, Neves A1 - Oskinova, Lida A1 - Przybilla, Norbert A1 - Eikenberry, Stephen S. A1 - Nieva, Maria Fernanda A1 - Langer, Norbert T1 - B fields in OB stars (BOB): FORS2 spectropolarimetric follow-up of the two rare rigidly rotating magnetosphere stars HD 23478 and HD 345439 JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Massive B-type stars with strong magnetic fields and fast rotation are very rare and pose a mystery for theories of star formation and magnetic field evolution. Only two such stars, called sigma Ori E analogues, were known until recently. A team involved in APOGEE, one of the Sloan Digital Sky Survey III programs, announced the discovery of two additional rigidly rotating magnetosphere stars, HD 23478 and HD 345439. The magnetic fields in these newly discovered sOri E analogues have not been investigated so far. Methods. In the framework of our ESO Large Programme and one normal ESO programme, we carried out low-resolution FORS 2 spectropolarimetric observations of HD 23478 and HD 345439. Results. In the measurements of hydrogen lines, we discover a rather strong longitudinal magnetic field of up to 1.5 kG in HD 23478 and up to 1.3 kG using the entire spectrum. The analysis of HD 345439 using four subsequent spectropolarimetric subexposures does not reveal a magnetic field at a significance level of 3 sigma. On the other hand, individual subexposures indicate that HD 345439 may host a strong magnetic field that rapidly varies over 88 min. The fast rotation of HD 345439 is also indicated by the behaviour of several metallic and He I lines in the low-resolution FORS 2 spectra that show profile variations already on this short time-scale. KW - stars: early-type KW - stars: fundamental parameters KW - stars: variables: general KW - stars: magnetic field KW - stars: individual: HD 23478 KW - stars: individual: HD 345439 Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526262 SN - 0004-6361 SN - 1432-0746 VL - 578 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Fossati, Luca A1 - Carroll, Thorsten Anthony A1 - Castro, Norberto A1 - Gonzalez, J. F. A1 - Ilyin, Ilya A1 - Przybilla, Norbert A1 - Schoeller, M. A1 - Oskinova, Lida A1 - Morel, T. A1 - Langer, N. A1 - Scholz, Ralf-Dieter A1 - Kharchenko, N. V. A1 - Nieva, M. -F. T1 - B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods. In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results. Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars. KW - binaries: close KW - stars: early-type KW - stars: fundamental parameters KW - stars: magnetic field KW - stars: variables: general KW - stars: individual: HD 164492C Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423490 SN - 0004-6361 SN - 1432-0746 VL - 564 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gagne, Marc A1 - Fehon, Garrett A1 - Savoy, Michael R. A1 - Cohen, David H. A1 - Townsley, Leisa K. A1 - Broos, Patrick S. A1 - Povich, Matthew S. A1 - Corcoran, Michael F. A1 - Walborn, Nolan R. A1 - Evans, Nancy Remage A1 - Moffat, Anthony F. J. A1 - Naze, Yael A1 - Oskinova, Lida T1 - Carina ob stars: x-ray signatures of wind shocks and magnetic FIELDS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L-X/L-bol relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of > 30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L-X cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star. KW - open clusters and associations: individual (Cl Bochum 10, Cl Bochum 11, Cl Collinder 228, Cl Trumpler 14, Cl Trumpler 15, Cl Trumpler 16) KW - stars: early-type KW - stars: individual (HD 93250, HD 93129A, HD 93403, HD 93205, HD 93343, QZ Car, SS73 24, FO 15, Cl Trumpler 16 22, CPD-59 2610, HD 93501) KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1088/0067-0049/194/1/5 SN - 0067-0049 VL - 194 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Massa, D. A1 - Oskinova, Lida A1 - Fullerton, A. W. A1 - Prinja, R. K. A1 - Bohlender, D. A. A1 - Morrison, N. D. A1 - Blake, M. A1 - Pych, W. T1 - CIR modulation of the X-ray flux from the O7.5 III(n)((f)) star xi Persei(a similar to...)? JF - Monthly notices of the Royal Astronomical Society N2 - We analyse a 162 ks high energy transmission grating Chandra observation of the O7.5 III(n)((f)) star xi Per, together with contemporaneous H alpha observations. The X-ray spectrum of this star is similar to other single O stars, and not pathological in any way. Its UV wind lines are known to display cyclical time variability, with a period of 2.086 d, which is thought to be associated with corotating interaction regions (CIRs). We examine the Chandra and H alpha data for variability on this time-scale. We find that the X-rays vary by similar to 15 per cent over the course of the observations and that this variability is out of phase with variable absorption on the blue wing of the H alpha profiles (assumed to be a surrogate for the UV absorption associated with CIRs). While not conclusive, both sets of data are consistent with models where the CIRs are either a source of X-rays or modulate them. KW - stars: early-type KW - stars: individual: xi Persei KW - stars: mass loss KW - stars: winds, outflows KW - X-rays: stars Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu565 SN - 0035-8711 SN - 1365-2966 VL - 441 IS - 3 SP - 2173 EP - 2180 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Massa, Derck A1 - Oskinova, Lida A1 - Prinja, Raman A1 - Ignace, Richard T1 - Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant xi Per BT - the Connection between X-Rays and Large-scale Wind Structure JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7. III(n) ((f)) star xi Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of xi Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N IV lambda 1718 and Si IV lambda 1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si IV lambda 1402, N IV lambda 1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180 degrees, on the surface of the star. We note that the presence and persistence of two spots separated by 180 degrees suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in xi Per. KW - stars: activity KW - stars: early-type KW - stars: winds, outflows KW - ultraviolet: stars KW - X-rays: stars Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab0283 SN - 0004-637X SN - 1538-4357 VL - 873 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Fürst, F. A1 - Kretschmar, P. A1 - Oskinova, Lida A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Shenar, Tomer A1 - Hamann, Wolf-Rainer T1 - Coupling hydrodynamics with comoving frame radiative transfer BT - Stellar wind stratification in the high-mass X-ray binary Vela X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods. We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results. The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at u(infinity) approximate to 600 km s(-1). On the other hand, the wind velocity in the inner region where the NS is located is only approximate to 100 km s(-1), which is not expected on the basis of a standard beta-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions. Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: early-type KW - stars: atmospheres KW - stars: massive KW - X-rays: binaries Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731575 SN - 1432-0746 VL - 610 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias A1 - Hainich, Rainer A1 - Shenar, Tomer T1 - Coupling hydrodynamics with comoving frame radiative transfer I. A unified approach for OB and WR stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims. We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (nonLTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods. Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results. The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant zeta Pup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions. For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard beta-law occur. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: early-type KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730642 SN - 1432-0746 VL - 603 PB - EDP Sciences CY - Les Ulis ER -