TY - JOUR A1 - Nomosatryo, Sulung A1 - Tjallingii, Rik A1 - Henny, Cynthia A1 - Ridwansyah, Iwan A1 - Wagner, Dirk A1 - Tomás, Sara A1 - Kallmeyer, Jens T1 - Surface sediment composition and depositional environments in tropical Lake Sentani, Papua Province, Indonesia JF - Journal of Paleolimnology N2 - Tropical Lake Sentani in the Indonesian Province Papua consists of four separate basins and is surrounded by a catchment with a very diverse geology. We characterized the surface sediment (upper 5 cm) of the lake's four sub-basins based on multivariate statistical analyses (principal component analysis, hierarchical clustering) of major element compositions obtained by X-ray fluorescence scanning. Three types of sediment are identified based on distinct compositional differences between rivers, shallow/proximal and deep/distal lake sediments. The different sediment types are mainly characterized by the correlation of elements associated with redox processes (S, Mn, Fe), carbonates (Ca), and detrital input (Ti, Al, Si, K) derived by river discharge. The relatively coarse-grained river sediments mainly derive form the mafic catchment geology and contribution of the limestone catchment geology is only limited. Correlation of redox sensitive and detrital elements are used to reveal oxidation conditions, and indicate oxic conditions in river samples and reducing conditions for lake sediments. Organic carbon (TOC) generally correlates with redox sensitive elements, although a correlation between TOC and individual elements change strongly between the three sediment types. Pyrite is the quantitatively dominant reduced sulfur mineral, monosulfides only reach appreciable concentrations in samples from rivers draining mafic and ultramafic catchments. Our study shows large spatial heterogeneity within the lake's sub-basins that is mainly caused by catchment geology and topography, river runoff as well as the bathymetry and the depth of the oxycline. We show that knowledge about lateral heterogeneity is crucial for understanding the geochemical and sedimentological variations recorded by these sediments. The highly variable conditions make Lake Sentani a natural laboratory, with its different sub-basins representing different depositional environments under identical tropical climate conditions. KW - Tropical lake KW - Lacustrine sediment KW - XRF analysis KW - Multivariate KW - statistics Y1 - 2022 U6 - https://doi.org/10.1007/s10933-022-00259-4 SN - 0921-2728 SN - 1573-0417 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kallmeyer, Jens A1 - Grewe, Sina A1 - Glombitza, Clemens A1 - Kitte, J. Axel T1 - Microbial abundance in lacustrine sediments: a case study from Lake Van, Turkey JF - International journal of earth sciences N2 - The ICDP "PaleoVan" drilling campaign at Lake Van, Turkey, provided a long (> 100 m) record of lacustrine subsurface sedimentary microbial cell abundance. After the ICDP campaign at Potrok Aike, Argentina, this is only the second time deep lacustrine cell counts have been documented. Two sites were cored and revealed a strikingly similar cell distribution despite differences in organic matter content and microbial activity. Although shifted towards higher values, cell counts from Lake Potrok Aike, Argentina, reveal very similar distribution patterns with depth. The lacustrine cell count data are significantly different from published marine records; the most probable cause is differences in sedimentary organic matter composition with marine sediments containing a higher fraction of labile organic matter. Previous studies showed that microbial activity and abundance increase centimetres to metres around geologic interfaces. The finely laminated Lake Van sediment allowed studying this phenomenon on the microscale. We sampled at the scale of individual laminae, and in some depth intervals, we found large differences in microbial abundance between the different laminae. This small-scale heterogeneity is normally overlooked due to much larger sampling intervals that integrate over several centimetres. However, not all laminated intervals exhibit such large differences in microbial abundance, and some non-laminated horizons show large variability on the millimetre scale as well. The reasons for such contrasting observations remain elusive, but indicate that heterogeneity of microbial abundance in subsurface sediments has not been taken into account sufficiently. These findings have implications not just for microbiological studies but for geochemistry as well, as the large differences in microbial abundance clearly show that there are distinct microhabitats that deviate considerably from the surrounding layers. KW - Subsurface biosphere KW - Deep biosphere KW - Lake Van KW - Cell counts KW - Lacustrine sediment Y1 - 2015 U6 - https://doi.org/10.1007/s00531-015-1219-6 SN - 1437-3254 SN - 1437-3262 VL - 104 IS - 6 SP - 1667 EP - 1677 PB - Springer CY - New York ER -