TY - GEN A1 - Zali, Zahra A1 - Rein, Teresa A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic–percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1320 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588828 SN - 1866-8372 IS - 1320 ER - TY - JOUR A1 - Zali, Zahra A1 - Rein, Teresa A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms JF - Solid earth N2 - Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic–percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data. Y1 - 2023 U6 - https://doi.org/10.5194/se-14-181-2023 SN - 1869-9529 VL - 14 IS - 2 SP - 181 EP - 195 PB - Coepernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Zali, Zahra A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Cotton, Fabrice A1 - Eibl, Eva P. S. T1 - Volcanic tremor extraction and earthquake detection using music information retrieval algorithms JF - Seismological research letters N2 - Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events. KW - algorithms KW - body waves KW - earthquakes KW - elastic waves KW - eruptions KW - geologic hazards KW - natural hazards KW - P-waves KW - S-waves KW - seismic waves KW - signal-to-noise ratio KW - swarms KW - volcanic earthquakes Y1 - 2021 U6 - https://doi.org/10.1785/0220210016 SN - 0895-0695 SN - 1938-2057 VL - 92 IS - 6 SP - 3668 EP - 3681 PB - Seismological Society of America CY - Boulder, Colo. ER - TY - JOUR A1 - Weber, Michael H. A1 - Abu-Ayyash, Khalil A1 - Abueladas, Abdel-Rahman A1 - Agnon, Amotz A1 - Al-Amoush, H. A1 - Babeyko, Andrey A1 - Bartov, Yosef A1 - Baumann, M. A1 - Ben-Avraham, Zvi A1 - Bock, Günter A1 - Bribach, Jens A1 - El-Kelani, R. A1 - Forster, A. A1 - Förster, Hans-Jürgen A1 - Frieslander, U. A1 - Garfunkel, Zvi A1 - Grunewald, Steffen A1 - Gotze, Hans-Jürgen A1 - Haak, Volker A1 - Haberland, Christian A1 - Hassouneh, Mohammed A1 - Helwig, S. A1 - Hofstetter, Alfons A1 - Jackel, K. H. A1 - Kesten, Dagmar A1 - Kind, Rainer A1 - Maercklin, Nils A1 - Mechie, James A1 - Mohsen, Amjad A1 - Neubauer, F. M. A1 - Oberhänsli, Roland A1 - Qabbani, I. A1 - Ritter, O. A1 - Rumpker, G. A1 - Rybakov, M. A1 - Ryberg, Trond A1 - Scherbaum, Frank A1 - Schmidt, J. A1 - Schulze, A. A1 - Sobolev, Stephan Vladimir A1 - Stiller, M. A1 - Th, T1 - The crustal structure of the Dead Sea Transform N2 - To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries Y1 - 2004 ER - TY - JOUR A1 - Wassermann, Joachim A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Gossler, J. A1 - Zschau, Jochen T1 - Kontinuierliche seismologische Netz- und Arraymessungen am Dekadenvulkan Merapi (Java, Indonesien) : ein Zwischenresümee = Continuous measurements at Merapi volcano (Java, Indonesia) using anetwork of small-scale seismograph arrays Y1 - 1998 SN - 0947-1944 ER - TY - JOUR A1 - Vogel, Kristin A1 - Riggelsen, Carsten A1 - Korup, Oliver A1 - Scherbaum, Frank T1 - Bayesian network learning for natural hazard analyses JF - Natural hazards and earth system sciences N2 - Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks. In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach. Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments. Y1 - 2014 U6 - https://doi.org/10.5194/nhess-14-2605-2014 SN - 1561-8633 VL - 14 IS - 9 SP - 2605 EP - 2626 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Tran Thanh Tuan, A1 - Scherbaum, Frank A1 - Malischewsky, Peter G. T1 - On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models JF - Geophysical journal international N2 - One of the key challenges in the context of local site effect studies is the determination of frequencies where the shakeability of the ground is enhanced. In this context, the H/V technique has become increasingly popular and peak frequencies of H/V spectral ratio are sometimes interpreted as resonance frequencies of the transmission response. In the present study, assuming that Rayleigh surface wave is dominant in H/V spectral ratio, we analyse theoretically under which conditions this may be justified and when not. We focus on 'layer over half-space' models which, although seemingly simple, capture many aspects of local site effects in real sedimentary structures. Our starting point is the ellipticity of Rayleigh waves. We use the exact formula of the H/V-ratio presented by Malischewsky & Scherbaum (2004) to investigate the main characteristics of peak and trough frequencies. We present a simple formula illustrating if and where H/V-ratio curves have sharp peaks in dependence of model parameters. In addition, we have constructed a map, which demonstrates the relation between the H/V-peak frequency and the peak frequency of the transmission response in the domain of the layer's Poisson ratio and the impedance contrast. Finally, we have derived maps showing the relationship between the H/V-peak and trough frequency and key parameters of the model such as impedance contrast. These maps are seen as diagnostic tools, which can help to guide the interpretation of H/V spectral ratio diagrams in the context of site effect studies. KW - Site effects KW - Theoretical seismology KW - Wave propagation Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04863.x SN - 0956-540X VL - 184 IS - 2 SP - 793 EP - 800 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Thomas, Ch. A1 - Weber, Michael H. A1 - Wicks, Chuck A1 - Scherbaum, Frank T1 - Small scatterers in the lower mantle observed at German broadband arrays Y1 - 1999 ER - TY - JOUR A1 - Thomas, Ch. A1 - Igel, Heiner A1 - Weber, Michael H. A1 - Scherbaum, Frank T1 - Acoustic simulation of P-wave propagation in a heterogeneous spherical earth : numerical method and application to precursor waves to PKPdf Y1 - 2000 ER - TY - JOUR A1 - Suryanto, Wiwit A1 - Igel, Heiner A1 - Wassermann, Joachim A1 - Cochard, Alain A1 - Schuberth, B. S. A. A1 - Vollmer, Daniel A1 - Scherbaum, Frank A1 - Schreiber, U. A1 - Velikoseltsev, A. T1 - First comparison of array-derived rotational ground motions with direct ring laser measurements JF - Bulletin of the Seismological Society of America N2 - Recently, ring laser technology has provided the first consistent observations of rotational ground motions around a vertical axis induced by earthquakes. "Consistent," in this context, implies that the observed waveforms and amplitudes are compatible with collocated recordings of translational ground motions. In particular, transverse accelerations should be in phase with rotation rate and their ratio proportional to local horizontal phase velocity assuming plane-wave propagation. The ring laser installed at the Fundamental station Wettzell in the Bavarian Forest, Southeast Germany, is recording the rotation rate around a vertical axis, theoretically a linear combination of the space derivatives of the horizontal components of motion. This suggests that, in principle, rotation can be derived from seismic-array experiments by "finite differencing." This has been attempted previously in several studies; however, the accuracy of these observations could never be tested in the absence of direct measurements. We installed a double cross-shaped array of nine stations from December 2003 to March 2004 around the ring laser instrument and observed several large earthquakes on both the ring laser and the seismic array. Here we present for the first time a comparison of array-derived rotations with direct measurements of rotations for ground motions induced by the M 6.3 Al Hoceima, Morocco, earthquake of 24 February 2004. With complete 3D synthetic seismograms calculated for this event we show that even low levels of noise may considerably influence the accuracy of the array-derived rotations when the minimum number of required stations (three) is used. Nevertheless, when using all nine stations, the overall fit between direct and array-derived measurements is surprisingly good (maximum correlation coefficient of 0.94). Y1 - 2006 U6 - https://doi.org/10.1785/0120060004 SN - 0037-1106 SN - 1943-3573 VL - 96 IS - 6 SP - 2059 EP - 2071 PB - GeoScienceWorld CY - Alexandria, Va. ER - TY - JOUR A1 - Schroeter, Kai A1 - Kreibich, Heidi A1 - Vogel, Kristin A1 - Riggelsen, Carsten A1 - Scherbaum, Frank A1 - Merz, Bruno T1 - How useful are complex flood damage models? JF - Water resources research N2 - We investigate the usefulness of complex flood damage models for predicting relative damage to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage models to predict relative building damage for five historic flood events in two different regions of Germany. Model complexity is measured in terms of the number of explanatory variables which varies from 1 variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of model predictive performance shows that additional explanatory variables besides the water depth improve the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to different regions and different flood events. Concerning the trade-off between predictive capability and reliability the model structure seem more important than the number of explanatory variables. Among the models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger than for the remaining models, and the uncertainties associated with damage predictions are reflected more completely. KW - floods KW - damage KW - model validation KW - Bayesian networks KW - regression tree Y1 - 2014 U6 - https://doi.org/10.1002/2013WR014396 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 4 SP - 3378 EP - 3395 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schmelzbach, C. A1 - Scherbaum, Frank A1 - Tronicke, Jens A1 - Dietrich, P. T1 - Bayesian frequency-domain blind deconvolution of ground-penetrating radar data JF - Journal of applied geophysics N2 - Enhancing the resolution and accuracy of surface ground-penetrating radar (GPR) reflection data by inverse filtering to recover a zero-phased band-limited reflectivity image requires a deconvolution technique that takes the mixed-phase character of the embedded wavelet into account. In contrast, standard stochastic deconvolution techniques assume that the wavelet is minimum phase and, hence, often meet with limited success when applied to GPR data. We present a new general-purpose blind deconvolution algorithm for mixed-phase wavelet estimation and deconvolution that (1) uses the parametrization of a mixed-phase wavelet as the convolution of the wavelet's minimum-phase equivalent with a dispersive all-pass filter, (2) includes prior information about the wavelet to be estimated in a Bayesian framework, and (3) relies on the assumption of a sparse reflectivity. Solving the normal equations using the data autocorrelation function provides an inverse filter that optimally removes the minimum-phase equivalent of the wavelet from the data, which leaves traces with a balanced amplitude spectrum but distorted phase. To compensate for the remaining phase errors, we invert in the frequency domain for an all-pass filter thereby taking advantage of the fact that the action of the all-pass filter is exclusively contained in its phase spectrum. A key element of our algorithm and a novelty in blind deconvolution is the inclusion of prior information that allows resolving ambiguities in polarity and timing that cannot be resolved using the sparseness measure alone. We employ a global inversion approach for non-linear optimization to find the all-pass filter phase values for each signal frequency. We tested the robustness and reliability of our algorithm on synthetic data with different wavelets, 1-D reflectivity models of different complexity, varying levels of added noise, and different types of prior information. When applied to realistic synthetic 2-D data and 2-D field data, we obtain images with increased temporal resolution compared to the results of standard processing. KW - Deconvolution KW - Inverse filtering KW - Ground penetrating radar KW - GPR KW - Data processing KW - Vertical resolution Y1 - 2011 U6 - https://doi.org/10.1016/j.jappgeo.2011.08.010 SN - 0926-9851 VL - 75 IS - 4 SP - 615 EP - 630 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schmedes, J. A1 - Hainzl, Sebastian A1 - Reamer, S. K. A1 - Scherbaum, Frank A1 - Hinzen, K. G. T1 - Moment release in the Lower Rhine Embayment, Germany : seismological perspective of the deformation process N2 - An important task of seismic hazard assessment consists of estimating the rate of seismic moment release which is correlated to the rate of tectonic deformation and the seismic coupling. However, the estimations of deformation depend on the type of information utilized (e.g. geodetic, geological, seismic) and include large uncertainties. We therefore estimate the deformation rate in the Lower Rhine Embayment (LRE), Germany, using an integrated approach where the uncertainties have been systematically incorporated. On the basis of a new homogeneous earthquake catalogue we initially determine the frequency-magnitude distribution by statistical methods. In particular, we focus on an adequate estimation of the upper bound of the Gutenberg-Richter relation and demonstrate the importance of additional palaeoseis- mological information. The integration of seismological and geological information yields a probability distribution of the upper bound magnitude. Using this distribution together with the distribution of Gutenberg-Richter a and b values, we perform Monte Carlo simulations to derive the seismic moment release as a function of the observation time. The seismic moment release estimated from synthetic earthquake catalogues with short catalogue length is found to systematically underestimate the long-term moment rate which can be analytically determined. The moment release recorded in the LRE over the last 250 yr is found to be in good agreement with the probability distribution resulting from the Monte Carlo simulations. Furthermore, the long-term distribution is within its uncertainties consistent with the moment rate derived by geological measurements, indicating an almost complete seismic coupling in this region. By means of Kostrov's formula, we additionally calculate the full deformation rate tensor using the distribution of known focal mechanisms in LRE. Finally, we use the same approach to calculate the seismic moment and the deformation rate for two subsets of the catalogue corresponding to the east- and west-dipping faults, respectively Y1 - 2005 SN - 0956-540X ER - TY - JOUR A1 - Scherbaum, Frank A1 - Weber, Michael H. A1 - Borm, G. T1 - The deep seismological lab in the KTB borehole: Status 1999 Y1 - 2000 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Schmidtke, E. T1 - Digital seismology tutor Y1 - 2001 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Schmedes, J. A1 - Cotton, Fabrice Pierre T1 - On the conversion of source-to-site distance measures for extended earthquake source models N2 - One of the major challenges in engineering seismology is the reliable prediction of site-specific ground motion for particular earthquakes, observed at specific distances. For larger events, a special problem arises, at short distances, with the source-to-site distance measure, because distance metrics based on a point-source model are no longer appropriate. As a consequence, different attenuation relations differ in the distance metric that they use. In addition to being a source of confusion, this causes problems to quantitatively compare or combine different ground- motion models; for example, in the context of Probabilistic Seismic Hazard Assessment, in cases where ground-motion models with different distance metrics occupy neighboring branches of a logic tree. In such a situation, very crude assumptions about source sizes and orientations often have to be used to be able to derive an estimate of the particular metric required. Even if this solves the problem of providing a number to put into the attenuation relation, a serious problem remains. When converting distance measures, the corresponding uncertainties map onto the estimated ground motions according to the laws of error propagation. To make matters worse, conversion of distance metrics can cause the uncertainties of the adapted ground-motion model to become magnitude and distance dependent, even if they are not in the original relation. To be able to treat this problem quantitatively, the variability increase caused by the distance metric conversion has to be quantified. For this purpose, we have used well established scaling laws to determine explicit distance conversion relations using regression analysis on simulated data. We demonstrate that, for all practical purposes, most popular distance metrics can be related to the Joyner-Boore distance using models based on gamma distributions to express the shape of some "residual function." The functional forms are magnitude and distance dependent and are expressed as polynomials. We compare the performance of these relations with manually derived individual distance estimates for the Landers, the Imperial Valley, and the Chi-Chi earthquakes Y1 - 2004 SN - 0037-1106 ER - TY - BOOK A1 - Scherbaum, Frank A1 - Mzhavanadze, Nana A1 - Arom, Simha A1 - Rosenzweig, Sebastian A1 - Müller, Meinard ED - Scherbaum, Frank T1 - Tonal Organization of the Erkomaishvili Dataset: Pitches, Scales, Melodies and Harmonies T3 - Computational Analysis Of Traditional Georgian Vocal Music N2 - In this study we examine the tonal organization of a series of recordings of liturgical chants, sung in 1966 by the Georgian master singer Artem Erkomaishvili. This dataset is the oldest corpus of Georgian chants from which the time synchronous F0-trajectories for all three voices have been reliably determined (Müller et al. 2017). It is therefore of outstanding importance for the understanding of the tuning principles of traditional Georgian vocal music. The aim of the present study is to use various computational methods to analyze what these recordings can contribute to the ongoing scientific dispute about traditional Georgian tuning systems. Starting point for the present analysis is the re-release of the original audio data together with estimated fundamental frequency (F0) trajectories for each of the three voices, beat annotations, and digital scores (Rosenzweig et al. 2020). We present synoptic models for the pitch and the harmonic interval distributions, which are the first of such models for which the complete Erkomaishvili dataset was used. We show that these distributions can be very compactly be expressed as Gaussian mixture models, anchored on discrete sets of pitch or interval values for the pitch and interval distributions, respectively. As part of our study we demonstrate that these pitch values, which we refer to as scale pitches, and which are determined as the mean values of the Gaussian mixture elements, define the scale degrees of the melodic sound scales which build the skeleton of Artem Erkomaishvili’s intonation. The observation of consistent pitch bending of notes in melodic phrases, which appear in identical form in a group of chants, as well as the observation of harmonically driven intonation adjustments, which are clearly documented for all pure harmonic intervals, demonstrate that Artem Erkomaishvili intentionally deviates from the scale pitch skeleton quite freely. As a central result of our study, we proof that this melodic freedom is always constrained by the attracting influence of the scale pitches. Deviations of the F0-values of individual note events from the scale pitches at one instance of time are compensated for in the subsequent melodic steps. This suggests a deviation-compensation mechanism at the core of Artem Erkomaishvili’s melody generation, which clearly honors the scales but still allows for a large degree of melodic flexibility. This model, which summarizes all partial aspects of our analysis, is consistent with the melodic scale models derived from the observed pitch distributions, as well as with the melodic and harmonic interval distributions. In addition to the tangible results of our work, we believe that our work has general implications for the determination of tuning models from audio data, in particular for non-tempered music. T3 - Computational Analysis Of Traditional Georgian Vocal Music - 1 KW - computational ethnomusicology KW - traditional Georgian music KW - Georgian chant KW - Artem Erkomaishvili KW - musical scales KW - computergestützte Musikethnologie KW - traditionelle Georgische Musik KW - Georgische liturgische Gesänge KW - Artem Erkomaishvili KW - musikalische Tonleitern Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476141 SN - 2702-2641 IS - 1 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Scherbaum, Frank A1 - Kühn, Nicolas M. T1 - Logic tree branch weights and probabilities summing up to one is not enough JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - Logic trees have become the most popular tool for the quantification of epistemic uncertainties in probabilistic seismic hazard assessment (PSHA). In a logic-tree framework, epistemic uncertainty is expressed in a set of branch weights, by which an expert or an expert group assigns degree-of-belief values to the applicability of the corresponding branch models. Despite the popularity of logic-trees, however, one finds surprisingly few clear commitments to what logic-tree branch weights are assumed to be (even by hazard analysts designing logic trees). In the present paper we argue that it is important for hazard analysts to accept the probabilistic framework from the beginning for assigning logic-tree branch weights. In other words, to accept that logic-tree branch weights are probabilities in the axiomatic sense, independent of one's preference for the philosophical interpretation of probabilities. We demonstrate that interpreting logic-tree branch weights merely as a numerical measure of "model quality," which are then subsequently normalized to sum up to unity, will with increasing number of models inevitably lead to an apparent insensitivity of hazard curves on the logic-tree branch weights, which may even be mistaken for robustness of the results. Finally, we argue that assigning logic-tree branch weights in a sequential fashion may improve their logical consistency. Y1 - 2011 U6 - https://doi.org/10.1193/1.3652744 SN - 8755-2930 VL - 27 IS - 4 SP - 1237 EP - 1251 PB - Earthquake Engineering Research Institute CY - Oakland ER - TY - JOUR A1 - Scherbaum, Frank A1 - Krüger, Frank A1 - Weber, Michael H. T1 - Double beam imaging : mapping lower mantle heterogeneities using combinations of source and receiver arrays Y1 - 1997 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Delavaud, Elise A1 - Riggelsen, Carsten T1 - Model selection in seismic hazard analysis : an information-theoretic perspective N2 - Although the methodological framework of probabilistic seismic hazard analysis is well established, the selection of models to predict the ground motion at the sites of interest remains a major challenge. Information theory provides a powerful theoretical framework that can guide this selection process in a consistent way. From an information- theoretic perspective, the appropriateness of models can be expressed in terms of their relative information loss (Kullback-Leibler distance) and hence in physically meaningful units (bits). In contrast to hypothesis testing, information-theoretic model selection does not require ad hoc decisions regarding significance levels nor does it require the models to be mutually exclusive and collectively exhaustive. The key ingredient, the Kullback-Leibler distance, can be estimated from the statistical expectation of log-likelihoods of observations for the models under consideration. In the present study, data-driven ground-motion model selection based on Kullback-Leibler-distance differences is illustrated for a set of simulated observations of response spectra and macroseismic intensities. Information theory allows for a unified treatment of both quantities. The application of Kullback-Leibler-distance based model selection to real data using the model generating data set for the Abrahamson and Silva (1997) ground-motion model demonstrates the superior performance of the information-theoretic perspective in comparison to earlier attempts at data- driven model selection (e.g., Scherbaum et al., 2004). Y1 - 2009 UR - http://bssa.geoscienceworld.org/ U6 - https://doi.org/10.1785/0120080347 SN - 0037-1106 ER -