TY - GEN A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic psychosocial stress in mice is associated with increased acid sphingomyelinase activity in liver and serum and with hepatic C16:0-ceramide accumulation T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1120 KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446241 SN - 1866-8372 IS - 1120 ER - TY - GEN A1 - Kleuser, Burkhard T1 - Divergent role of sphingosine 1-phosphate in liver health and disease T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1051 KW - sphingolipids KW - sphingosine kinase KW - fibrosis KW - non-alcoholic fatty liver disease KW - insulinresistance KW - liver fibrosis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474398 SN - 1866-8372 IS - 1051 ER - TY - GEN A1 - Kleuser, Burkhard T1 - The enigma of sphingolipids in health and disease T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1040 KW - sphingosine-1-phosphate Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472637 SN - 1866-8372 IS - 1040 ER - TY - GEN A1 - Giulbudagian, Michael A1 - Yealland, Guy A1 - Hönzke, Stefan A1 - Edlich, Alexander A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderón, Marcelo T1 - Breaking the barrier BT - potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1030 KW - thermoresponsive-nanogel KW - topical KW - anti-inflammatory therapy KW - etanercept KW - skin equivalents Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459301 SN - 1866-8372 IS - 1030 SP - 450 EP - 463 ER - TY - GEN A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 637 KW - Gestational diabetes KW - metabolomics KW - phosphatidylcholine acyl-alkyl C 32:1 KW - proline Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424585 SN - 1866-8372 IS - 637 ER -