TY - JOUR A1 - Bora, Sanjay Singh A1 - Scherbaum, Frank A1 - Kühn, Nicolas A1 - Stafford, Peter T1 - Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - One of the major challenges related with the current practice in seismic hazard studies is the adjustment of empirical ground motion prediction equations (GMPEs) to different seismological environments. We believe that the key to accommodating differences in regional seismological attributes of a ground motion model lies in the Fourier spectrum. In the present study, we attempt to explore a new approach for the development of response spectral GMPEs, which is fully consistent with linear system theory when it comes to adjustment issues. This approach consists of developing empirical prediction equations for Fourier spectra and for a particular duration estimate of ground motion which is tuned to optimize the fit between response spectra obtained through the random vibration theory framework and the classical way. The presented analysis for the development of GMPEs is performed on the recently compiled reference database for seismic ground motion in Europe (RESORCE-2012). Although, the main motivation for the presented approach is the adjustability and the use of the corresponding model to generate data driven host-to-target conversions, even as a standalone response spectral model it compares reasonably well with the GMPEs of Ambraseys et al. (Bull Earthq Eng 3:1-53, 2005), Akkar and Bommer (Seismol Res Lett 81(2):195-206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100(6):2978-2995, 2010). KW - Ground motion prediction equation KW - Fourier amplitude spectrum KW - Duration KW - Random vibration theory KW - Response Spectrum Y1 - 2014 U6 - https://doi.org/10.1007/s10518-013-9482-z SN - 1570-761X SN - 1573-1456 VL - 12 IS - 1 SP - 467 EP - 493 PB - Springer CY - Dordrecht ER -