TY - JOUR A1 - Heinze, Johannes A1 - Simons, Nadja K. A1 - Seibold, Sebastian A1 - Wacker, Alexander A1 - Weithoff, Guntram A1 - Gossner, Martin M. A1 - Prati, Daniel A1 - Bezemer, T. Martijn A1 - Joshi, Jasmin Radha T1 - The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory JF - Oecologia N2 - Under natural conditions, aboveground herbivory and plant-soil feedbacks (PSFs) are omnipresent interactions strongly affecting individual plant performance. While recent research revealed that aboveground insect herbivory generally impacts the outcome of PSFs, no study tested to what extent the intensity of herbivory affects the outcome. This, however, is essential to estimate the contribution of PSFs to plant performance under natural conditions in the field. Here, we tested PSF effects both with and without exposure to aboveground herbivory for four common grass species in nine grasslands that formed a gradient of aboveground invertebrate herbivory. Without aboveground herbivores, PSFs for each of the four grass species were similar in each of the nine grasslands-both in direction and in magnitude. In the presence of herbivores, however, the PSFs differed from those measured under herbivory exclusion, and depended on the intensity of herbivory. At low levels of herbivory, PSFs were similar in the presence and absence of herbivores, but differed at high herbivory levels. While PSFs without herbivores remained similar along the gradient of herbivory intensity, increasing herbivory intensity mostly resulted in neutral PSFs in the presence of herbivores. This suggests that the relative importance of PSFs for plant-species performance in grassland communities decreases with increasing intensity of herbivory. Hence, PSFs might be more important for plant performance in ecosystems with low herbivore pressure than in ecosystems with large impacts of insect herbivores. KW - Plant-soil feedback KW - Herbivorous insects KW - Field conditions KW - Selective herbivory KW - Nutritional quality Y1 - 2019 U6 - https://doi.org/10.1007/s00442-019-04442-9 SN - 0029-8549 SN - 1432-1939 VL - 190 IS - 3 SP - 651 EP - 664 PB - Springer CY - New York ER - TY - GEN A1 - Koussoroplis, Apostolos-Manuel A1 - Schwarzenberger, Anke A1 - Wacker, Alexander T1 - Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex N2 - We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 336 KW - Cyanobacteria KW - Digestive enzyme activity KW - Nutritional quality KW - Lipases Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395661 ER - TY - JOUR A1 - Koussoroplis, Apostolos-Manuel A1 - Schwarzenberger, Anke A1 - Wacker, Alexander T1 - Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex JF - Biology open : BiO N2 - We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments. KW - Cyanobacteria KW - Digestive enzyme activity KW - Nutritional quality KW - Lipases Y1 - 2017 U6 - https://doi.org/10.1242/bio.022046 VL - 6 SP - 210 EP - 216 PB - The company of Biologists CY - Cambridge ER -