TY - JOUR A1 - Spooner, Cameron A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro A1 - Götze, Hans-Jürgen A1 - Luijendijk, Elco T1 - The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity JF - Global and planetary change N2 - Temperature exerts a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone. The latter can be regarded as the lower bound to the seismogenic zone, thereby controlling the spatial distribution of seismicity within a lithospheric plate. As such, models of the crustal thermal field are important to understand the localisation of seismicity. Here we relate results from 3D simulations of the steady state thermal field of the Alpine orogen and its forelands to the distribution of seismicity in this seismically active area of Central Europe. The model takes into account how the crustal heterogeneity of the region effects thermal properties and is validated with a dataset of wellbore temperatures. We find that the Adriatic crust appears more mafic, through its radiogenic heat values (1.30E-06 W/m3) and maximum temperature of seismicity (600 degrees C), than the European crust (1.3-2.6E-06 W/m3 and 450 degrees C). We also show that at depths of < 10 km the thermal field is largely controlled by sedimentary blanketing or topographic effects, whilst the deeper temperature field is primarily controlled by the LAB topology and the distribution and parameterization of radiogenic heat sources within the upper crust. KW - steady-state KW - thermal-field KW - Europe KW - Alps KW - Adria KW - seismicity Y1 - 2020 U6 - https://doi.org/10.1016/j.gloplacha.2020.103288 SN - 0921-8181 SN - 1872-6364 VL - 193 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Spooner, Cameron A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro A1 - Anikiev, Denis T1 - How Alpine seismicity relates to lithospheric strength JF - International journal of earth sciences N2 - Despite the amount of research focussed on the Alpine orogen, different hypotheses still exist regarding varying spatial seismicity distribution patterns throughout the region. Previous measurement-constrained regional 3D models of lithospheric density distribution and thermal field facilitate the generation of a data-based rheological model of the region. In this study, we compute the long-term lithospheric strength and compare its spatial variation to observed seismicity patterns. We demonstrate how strength maxima within the crust (similar to 1 GPa) and upper mantle (> 2 GPa) occur at temperatures characteristic of the onset of crystal plasticity in those rocks (crust: 200-400 degrees C; mantle: similar to 600 degrees C), with almost all seismicity occurring in these regions. Correlation in the northern and southern forelands between crustal and lithospheric strengths and seismicity show different patterns of event distribution, reflecting their different tectonic settings. Seismicity in the plate boundary setting of the southern foreland corresponds to the integrated lithospheric strength, occurring mainly in the weaker domains surrounding the strong Adriatic plate. In the intraplate setting of the northern foreland, seismicity correlates to modelled crustal strength, and it mainly occurs in the weaker and warmer crust beneath the Upper Rhine Graben. We, therefore, suggest that seismicity in the upper crust is linked to weak crustal domains, which are more prone to localise deformation promoting failure and, depending on the local properties of the fault, earthquakes at relatively lower levels of accumulated stress than their neighbouring stronger counterparts. Upper mantle seismicity at depths greater than modelled brittle conditions, can be either explained by embrittlement of the mantle due to grain-size sensitive deformation within domains of active or recent slab cooling, or by dissipative weakening mechanisms, such as thermal runaway from shear heating and/or dehydration reactions within an overly ductile mantle. Results generated in this study are available for open access use to further discussions on the region. KW - lithosphere KW - strength KW - rheology KW - 3D-Model KW - Alps KW - seismicity Y1 - 2022 U6 - https://doi.org/10.1007/s00531-022-02174-5 SN - 1437-3254 SN - 1437-3262 VL - 111 IS - 4 SP - 1201 EP - 1221 PB - Springer CY - Berlin ; Heidelberg ER -