TY - JOUR A1 - Wang, Yongbo A1 - Herzschuh, Ulrike A1 - Liu, Xingqi A1 - Korup, Oliver A1 - Diekmann, Bernhard T1 - A high-resolution sedimentary archive from landslide-dammed Lake Mengda, north-eastern Tibetan Plateau JF - Journal of paleolimnolog N2 - Lacustrine sediments have been widely used to investigate past climatic and environmental changes on millennial to seasonal time scales. Sedimentary archives of lakes in mountainous regions may also record non-climatic events such as earthquakes. We argue herein that a set of 64 annual laminae couplets reconciles a stratigraphically inconsistent accelerator mass spectrometry (AMS) C-14 chronology in a similar to 4-m-long sediment core from Lake Mengda, in the north-eastern Tibetan Plateau. The laminations suggest the lake was formed by a large landslide, triggered by the 1927 Gulang earthquake (M = 8.0). The lake sediment sequence can be separated into three units based on lithologic, sedimentary, and isotopic characteristics. Starting from the bottom of the sequence, these are: (1) unweathered, coarse, sandy valley-floor deposits or landslide debris that pre-date the lake, (2) landslide-induced, fine-grained soil or reworked landslide debris with a high organic content, and (3) lacustrine sediments with low organic content and laminations. These annual laminations provide a high-resolution record of anthropogenic and environmental changes during the twentieth century, recording enhanced sediment input associated with two phases of construction activities. The high mean sedimentation rates of up to 4.8 mm year(-1) underscore the potential for reconstructing such distinct sediment pulses in remote, forested, and seemingly undisturbed mountain catchments. KW - Earthquake KW - Landslide KW - Natural dam KW - Tibetan Plateau Y1 - 2014 U6 - https://doi.org/10.1007/s10933-012-9666-6 SN - 0921-2728 SN - 1573-0417 VL - 51 IS - 2 SP - 303 EP - 312 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Cao, Xianyong A1 - Ni, Jian A1 - Herzschuh, Ulrike A1 - Wang, Yongbo A1 - Zhao, Yan T1 - A late quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions set up and evaluation JF - Review of palaeobotany and palynology : an international journal N2 - A total of 271 pollen records were selected from a large collection of both raw and digitized pollen spectra from eastern continental Asia (70 degrees-135 degrees E and 18 degrees-55 degrees N). Following pollen percentage recalculations, taxonomic homogenization, and age-depth model revision, the pollen spectra were interpolated at a 500-year resolution and a taxonomically harmonized and temporally standardized fossil pollen dataset established with 226 pollen taxa, covering the last 22 cal lea. Of the 271 pollen records, 85% were published since 1990, with reliable chronologies and high temporal resolutions; of these, 50% have raw data with complete pollen assemblages, ensuring the quality of this dataset The pollen records available for each 500-year time slice are well distributed over all main vegetation types and climatic zones of the study area, making their pollen spectra suitable for paleovegetation and paleoclimate research. Such a dataset can be used as an example for the development of similar datasets for other regions of the world. KW - fossil pollen KW - eastern asia KW - pollen taxa KW - age-depth model KW - resampling Y1 - 2013 U6 - https://doi.org/10.1016/j.revpalbo.2013.02.003 SN - 0034-6667 VL - 194 IS - 13 SP - 21 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dallmeyer, Anne A1 - Claussen, Martin A1 - Ni, Jian A1 - Cao, Xianyong A1 - Wang, Yongbo A1 - Fischer, Nils A1 - Pfeiffer, Madlene A1 - Jin, Liya A1 - Khon, Vyacheslav A1 - Wagner, Sebastian A1 - Haberkorn, Kerstin A1 - Herzschuh, Ulrike T1 - Biome changes in Asia since the mid-Holocene BT - an analysis of different transient Earth system model simulations JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate-vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere-ocean(-vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon-westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4 degrees in the ensemble mean, ranging from 1.5 to 6 degrees in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21% during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert-steppe margin is shifted westward by 5 degrees (1-9 degrees in the individual simulations). The forest biomes are expanded north-westward by 2 degrees, ranging from 0 to 4 degrees in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene. Y1 - 2017 U6 - https://doi.org/10.5194/cp-13-107-2017 SN - 1814-9324 SN - 1814-9332 VL - 13 IS - 2 SP - 107 EP - 134 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Dallmeyer, Anne A1 - Claussen, Martin A1 - Ni, Jian A1 - Cao, Xianyong A1 - Wang, Yongbo A1 - Fischer, Nils A1 - Pfeiffer, Madlene A1 - Jin, Liya A1 - Khon, Vyacheslav A1 - Wagner, Sebastian A1 - Haberkorn, Kerstin A1 - Herzschuh, Ulrike T1 - Biome changes in Asia since the mid-Holocene BT - An analysis of different transient Earth system model simulations T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate-vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere-ocean(-vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon-westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4 degrees in the ensemble mean, ranging from 1.5 to 6 degrees in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21% during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert-steppe margin is shifted westward by 5 degrees (1-9 degrees in the individual simulations). The forest biomes are expanded north-westward by 2 degrees, ranging from 0 to 4 degrees in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 643 KW - Last Glacial Maximum KW - Eastern Continental Asia KW - summer monsoon precipitation KW - PMIP2 coupled simulations KW - Global Vegetation Model KW - northern high‐latitudes KW - Holocene climate change KW - Tibetan Plateau KW - environmental changes KW - Inner Mongolia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418755 SN - 1866-8372 IS - 643 SP - 107 EP - 134 ER - TY - JOUR A1 - Wang, Yongbo A1 - Bekeschus, Benjamin A1 - Handorf, Doerthe A1 - Liu, Xingqi A1 - Dallmeyer, Anne A1 - Herzschuh, Ulrike T1 - Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with "Xie-Beni" index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or even descending airflows in the adjacent subtropical regions, resulting in a precipitation deficit compared to the late Holocene. Our conceptual model therefore integrates regionally contrasting moisture changes into the Global Monsoon hypothesis. (C) 2017 Elsevier Ltd. All rights reserved. KW - Global monsoon KW - Holocene KW - Eastern hemisphere KW - Moisture evolution Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.06.006 SN - 0277-3791 VL - 169 SP - 231 EP - 242 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Aichner, Bernhard A1 - Herzschuh, Ulrike A1 - Wilkes, Heinz A1 - Schulz, Hans-Martin A1 - Wang, Yongbo A1 - Plessen, Birgit A1 - Mischke, Steffen A1 - Diekmann, Bernhard A1 - Zhang, Chengjun T1 - Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Organic geochemical proxy data from surface sediment samples and a sediment core from Lake Donggi Cona were used to infer environmental changes on the northeastern Tibetan Plateau spanning the last 18.4 kyr. Long-chain n-alkanes dominate the aliphatic hydrocarbon fraction of the sediment extract from most surface sediment samples and the sediment core. Unsaturated mid-chain n-alkanes (nC(23:1) and nC(25:1)) have high abundances in some samples, especially in core samples from the late glacial and early Holocene. TOC contents, organic biomarker and non-pollen-palynomorph concentrations and results from organic petrologic analysis on selected samples suggest three major episodes in the history of Lake Donggi Cona. Before ca. 12.6 cal ka BP samples contain low amounts of organic matter due to cold and arid conditions during the late glacial. After 12.6 cal ka BP, relatively high contents of TOC and concentrations of Botryococcus fossils, as well as enhanced concentrations of mid-chain n-alkanes and n-alkenes suggest a higher primary and macrophyte productivity than at present This is supported by high contents of palynomorphs derived from higher plants and algae and was possibly triggered by a decrease of salinity and amelioration of climate during the early Holocene. Since 6.8 cal ka BP Lake Donggi Cona has been an oligotrophic freshwater lake. Proxy data suggest that variations in insolation drive ecological changes in the lake, with increased aquatic productivity during the early Holocene summer insolation maximum. Short-term drops of TOC contents or biomarker concentrations (at 9.9 cal ka BP, after 8.0 and between 3.5 and 1.7 cal ka BP) can possibly be related to relatively cool and dry episodes reported from other sites on the north-eastern Tibetan Plateau, which are hypothesized to occur in phase with Northern Hemisphere cooling events. KW - Biomarker KW - Holocene KW - n-alkanes KW - Total organic carbon KW - Organic matter KW - Macerals KW - Aquatic macrophytes Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2011.10.015 SN - 0031-0182 VL - 313 IS - 2 SP - 140 EP - 149 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wang, Yongbo A1 - Liu, Xingqi A1 - Mischke, Steffen A1 - Herzschuh, Ulrike T1 - Environmental constraints on lake sediment mineral compositions from the Tibetan Plateau and implications for paleoenvironment reconstruction JF - Journal of paleolimnolog N2 - Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (< 0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4-5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records. KW - Mineral composition KW - XRD KW - Multivariate regression trees KW - Electrical conductivity KW - Paleolimnology KW - Tibetan Plateau Y1 - 2012 U6 - https://doi.org/10.1007/s10933-011-9549-2 SN - 0921-2728 VL - 47 IS - 1 SP - 71 EP - 85 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Wang, Yongbo A1 - Kuhn, Gerhard A1 - Yu, Zhitong T1 - Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records JF - Geophysical research letters N2 - Late Holocene glacier variations in westernmost Tibetan Plateau were studied based on the analysis of grain size, magnetic susceptibility, and elements from an 8.3m long distal glaciolacustrine sediment core of Kalakuli Lake. Our results show that there are four glacier expansion episodes occurring in 4200-3700calibrated years (cal years) B.P., 2950-2300cal years B.P., 1700-1070cal years B.P., and 570-100cal years B.P. and four glacier retreat periods of 3700-2950cal years B.P., 2300-1700cal years B.P., 1070-570cal years B.P., and 50cal years B.P.-present. The four glacier expansion episodes are generally in agreement with the glacier activities indicted by the moraines at Muztagh Ata and Kongur Shan, as well as with the late Holocene ice-rafting events in the North Atlantic. Over the last 2000years, our reconstructed glacier variations are in temporal agreement with reconstructed temperature from China and the Northern Hemisphere, indicating that glacier variations at centennial time scales are very sensitive to temperature in western Tibetan Plateau. KW - glaciolacustrine sediment KW - westernmost Tibetan Plateau KW - glacier variation KW - Kalakuli Lake KW - late Holocene KW - temperature Y1 - 2014 U6 - https://doi.org/10.1002/2014GL060444 SN - 0094-8276 SN - 1944-8007 VL - 41 IS - 17 SP - 6265 EP - 6273 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Wang, Yongbo T1 - Late glacial to Holocene climate and vegetation changes on the Tibetan Plateau inferred from fossil pollen records in lacustrine sediments T1 - Pollenanalytische Ableitung der spätglazialen und holozänen Klima- und Vegetationsveränderungen auf dem tibetischen Hochland anhand von Seesedimenten N2 - The past climate in central Asia, and especially on the Tibetan Plateau (TP), is of great importance for an understanding of global climate processes and for predicting the future climate. As a major influence on the climate in this region, the Asian Summer Monsoon (ASM) and its evolutionary history are of vital importance for accurate predictions. However, neither the evolutionary pattern of the summer monsoon nor the driving mechanisms behind it are yet clearly understood. For this research, I first synthesized previously published Late Glacial to Holocene climatic records from monsoonal central Asia in order to extract the general climate signals and the associated summer monsoon intensities. New climate and vegetation sequences were then established using improved quantitative methods, focusing on fossil pollen records recovered from Tibetan lakes and also incorporating new modern datasets. The pollen-vegetation and vegetation-climate relationships on the TP were also evaluated in order to achieve a better understanding of fossil pollen records. The synthesis of previously published moisture-related palaeoclimate records in monsoonal central Asia revealed generally different temporal patterns for the two monsoonal subsystems, i.e. the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM). The ISM appears to have experienced maximum wet conditions during the early Holocene, while many records from the area affected by the EASM indicate relatively dry conditions at that time, particularly in north-central China where the maximum moisture levels occurred during the middle Holocene. A detailed consideration of possible driving factors affecting the summer monsoon, including summer solar insolation and sea surface temperatures, revealed that the ISM was primarily driven by variations in northern hemisphere solar insolation, and that the EASM may have been constrained by the ISM resulting in asynchronous patterns of evolution for these two subsystems. This hypothesis is further supported by modern monsoon indices estimated using the NCEP/NCAR Reanalysis data from the last 50 years, which indicate a significant negative correlation between the two summer monsoon subsystems. By analogy with the early Holocene, intensification of the ISM during coming decades could lead to increased aridification elsewhere as a result of the asynchronous nature of the monsoon subsystems, as can already be observed in the meteorological data from the last 15 years. A quantitative climate reconstruction using fossil pollen records was achieved through analysis of sediment core recovered from Lake Donggi Cona (in the north-eastern part of the TP) which has been dated back to the Last Glacial Maximum (LGM). A new data-set of modern pollen collected from large lakes in arid to semi-arid regions of central Asia is also presented herein. The concept of "pollen source area" was introduced to modern climate calibration based on pollen from large lakes, and was applied to the fossil pollen sequence from Lake Donggi Cona. Extremely dry conditions were found to have dominated the LGM, and a subsequent gradually increasing trend in moisture during the Late Glacial period was terminated by an abrupt reversion to a dry phase that lasted for about 1000 years and coincided with the first Heinrich Event of the northern Atlantic region. Subsequent periods corresponding to the warm Bølling-Allerød period and the Younger Dryas cold event were followed by moist conditions during the early Holocene, with annual precipitation of up to about 400 mm. A slightly drier trend after 9 cal ka BP was then followed by a second wet phase during the middle Holocene that lasted until 4.5 cal ka BP. Relatively steady conditions with only slight fluctuations then dominated the late Holocene, resulting in the present climatic conditions. In order to investigate the relationship between vegetation and climate, temporal variations in the possible driving factors for vegetation change on the northern TP were examined using a high resolution late Holocene pollen record from Lake Kusai. Moving-window Redundancy Analyses (RDAs) were used to evaluate the correlations between pollen assemblages and individual sedimentary proxies. These analyses have revealed frequent fluctuations in the relative abundances of alpine steppe and alpine desert components, and in particular a decrease in the total vegetation cover at around 1500 cal a BP. The climate was found to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, after the 1500 cal a BP threshold in vegetation cover was crossed the vegetation appears to have been affected more by extreme events such as dust storms or fluvial erosion than by the general climatic trends. In addition, pollen spectra over the last 600 years have been revealed by Procrustes analysis to be significantly different from those recovered from older samples, which is attributed to an increased human impact that resulted in unprecedented changes to the composition of the vegetation. Theoretical models that have been developed and widely applied to the European area (i.e. the Extended R-Value (ERV) model and the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model) have been applied to the high alpine TP ecosystems in order to investigate the pollen-vegetation relationships, as well as for quantitative reconstructions of vegetation abundance. The modern pollen–vegetation relationships for four common pollen species on the TP have been investigated using Poaceae as the reference taxa. The ERV Submodel 2 yielded relatively high PPEs for the steppe and desert taxa (Artemisia Chenopodiaceae), and low PPEs for the Cyperaceae that are characteristic of the alpine Kobresia meadows. The plant abundances on the central and north-eastern TP were quantified by applying these PPEs to four post-Late Glacial fossil pollen sequences. The reconstructed vegetation assemblages for the four pollen sequences always yielded smaller compositional species turnovers than suggested by the pollen spectra, indicating that the strength of the previously-reported vegetation changes may therefore have been overestimated. In summary, the key findings of this thesis are that (a) the two ASM subsystems show asynchronous patterns during both the Holocene and modern time periods, (b) fossil pollen records from large lakes reflect regional signals for which the pollen source areas need to be taken into account, (c) climate is not always the main driver for vegetation change, and (d) previously reported vegetation changes on the TP may have been overestimated because they ignored inter-species variations in pollen productivity. N2 - Das Paläoklima in Zentralasien, besonders in der Hochebene von Tibet (HT), ist von großer Bedeutung um globale Klimaprozesse zu verstehen und mögliche Voraussagung für die zukunft zu treffen. Als wichtigstes Klimaphänomen nehmen der asiatische Sommermonsun (ASM) und seine Entwicklungsgeschichte eine Schlüsselposition ein. Dennoch sind derzeit weder das Entwicklungsschema noch der antreibende Vorgang ausreichend verstanden. Dies gilt insbesondere für das Holozän, für welches große Kimaschwankungen und regionale Diskrepanzen weithin belegt sind. Deshalb habe ich zuerst holozäne Klimadaten zusammengefasst. Bereits veröffentlichte Publikationen aus den Monsungebieten Zentralasiens dienten als Grundlage, um die wichtigsten Klimasignale und die zugehörigen Intensitäten des Sommermonsuns heraus zu arbeiten. Anhand von Pollensequenzen aus tibetischen Seen erzeugte ich neue Klima- und Vegetationssequenzen, welche auf verbesserten quantitativen Methoden und rezenten Datensätzen beruhen. Außerdem wurden die Verhältnisse Pollen-Vegetation und Vegetation-Klima bewertet, um Schlussfolgerungen fossiler Pollensequenzen zu verbessern. Die Zusammenfassung der zuvor veröffentlichten, niederschlagsbezogenen Paläoklimadaten im Monsungebiet Zentralasiens ergab generell unterschiedliche Muster für die zwei Teilsysteme des ASMs, den Indischen Sommermonsun (ISM) und den Ostasiatischen Sommermonsun (OASM). Der ISM weist maximale feuchte Bedingungen während des frühen Holozöns auf, während viele Datensätze aus dem Gebiet des OASMs einen relativ trockenen Zustand anzeigen, besonders im nördlichen Zentralchina, wo maximale Niederschläge während des mittleren Holozäns registriert wurden. Genaue Betrachtungen der Antriebsfaktoren des Sommermonsuns ergaben, dass der ISM hauptsächlich durch Veränderungen der Sonneneinstrahlung auf der Nordhemisphäre angetrieben wird, während der OASM potentiell durch den ISM beherrscht wird - dies führt zu asynchronen Entwicklungen. Diese Hypothese wird durch rezente Monsunindizes gestützt. Sie weisen eine signifikant negative Korrelation zwischen den beiden Sommermonsun-Teilsystemen auf. Für die quantitative Klimarekonstruktion von Pollensequenzen wurde ein Sedimentkern aus dem See Donggi Cona im Nordosten der HT analysiert, der bis zum letzten glazialen Maximum (LGM) zurückdatiert wurde. Aufgrund der Tatsache, dass Donggi Cona ein relativ großer See ist, wird hiermit ein neuer Pollen-Klima-Kalibrierungsdatensatz auf Grundlage großer Seen in ariden und semiariden Regionen Zentralasiens vorgelegt. Das Konzept des Pollenherkunftsgebietes wurde in diese rezente, pollenbasierte Klimakalibrierung eingebracht und auf die Pollensequenz von Donggi Cona angewendet. Die Auswertung ergab, dass extrem trockene Bedingungen während des LGM (ca. 100 mm/yr) vorherrschten. Ein ansteigender Trend von Niederschlägen während des späten Glazials wurde durch einen abrupten Rückgang zu einer etwa 1000-jährigen Trockenphase beendet, welche mit Heinrich-Ereignis 1 in der Nordatlantik-Region übereinstimmt. Danach entsprechen die Klimaperioden dem warmen Bølling/Allerød und dem Kälteereignis der Jüngeren Dryas. Anschließend herrschten feuchte Bedingungen im frühen Holozän (bis zu 400 mm/yr). Ein etwas trockenerer Trend nach dem Holozänen Klimaoptimum wurde dann von einer zweiten Feuchtphase abgelöst, welche bis 4,5 cal. ka vor heute andauerte. Relativ gleichmäßige Bedingungen dominierten das späte Holozän bis heute. Die Klimadynamik seit dem LGM wurde vor allem durch Entgletscherung und Intensitätsschwankungen des ASM bestimmt. Bei der Betrachtung des Vegetation-Klima-Verhältnisses habe ich die zeitlichen Variationen der bestimmenden Faktoren hinsichtlich der Vegetationsdynamik auf der nördlichen HT untersucht. Dabei wurden hochauflösende holozäne Pollendaten des Kusai-Sees verwendet. Eine Redundanzanalyse (RDA) wurde angewendet um die Korrelation zwischen Pollenvergesellschaftungen und individuellen sedimentären Klimaanzeigern als auch die damit verbundene Signifikanz zu bewerten. Es stellte sich heraus, dass das Klima einen wichtigen Einfluss auf den Veränderungen in der Vegetation besaß, wenn die Bedingungen relativ warm und feucht waren. Trotzdem scheint es, dass, dass die Vegetation bei zu geringer Bedeckung stärker durch Extremereignisse wie Staubstürme oder fluviale Erosion beeinflusst wurde. Pollenspektren der vergangen 600 Jahre erwiesen sich als signifikant unterschiedlich verglichen mit den älterer Proben, was auf verstärkten anthropogenen Einfluss hindeutet. Dieser resultierte in einem beispiellosen Wandel in der Zusammensetzung der Vegetation. In Hinsicht auf das Pollen-Vegetation-Verhältnis und der quantitativen Rekonstruktion der Vegetationshäufigkeit habe ich theoretische Modelle, welche für europäische Regionen entwickelt und weithin angewendet wurden, respektive die Modelle "Extended R-Value" (ERV) sowie "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS), auf die hochalpinen Ökosysteme der HT überführt. Dafür wurden rezente Pollen-Vegetations-Verhältnisse von vier weit verbreiteten Pollen-Arten der HT überprüft. Poaceae wurden als Referenztaxa verwendet. Bei der Anwendung dieser Verhältnisse auf vier Pollensequenzen, welche die Paläoumweltbedingungen seit dem letzten Glazial widerspiegeln, wurden die Häufigkeiten von Pflanzen auf der zentralen und nordöstlichen HT quantifiziert. Anteile von Artimisia und Chenopodiaceae waren dabei im Vergleich zu ihren ursprünglichen Pollenprozenten deutlich verringert. Cyperaceae hingegen wies eine relative Zunahme in dieser Vegetationsrekonstruktion auf. Die rekonstruierten Vegetationsvergesellschaftungen an den Standorten der vier Pollensequenzen ergaben stets geringere Umwälzungen in der Artenzusammensetzung, als durch die Pollenspektren zu vermuten gewesen wäre. Dies kann ein Hinweis darauf sein, dass die Intensität der bislang angenommenen Vegetationsveränderungen überschätzt worden ist. Zusammengefasst sind die Hauptresultate dieser Dissertation, dass (a) die zwei ASM Teilsysteme asynchrone Muster während des Holozäns und heute aufweisen, dass (b) fossile Pollensequenzen großer Seen regionale Klimasignale widerspiegeln sofern die Herkunftsgebiete der Pollen berücksichtigt werden, dass (c) Klima nicht immer der Haupteinflussfaktor für Vegetationswandel ist und dass (d) das Ausmaß von Vegetationsveränderungen in zuvor veröffentlichten Studien auf der Hochebene von Tibet überschätzt worden sein kann, weil Diskrepanzen der Pollenproduktivität zwischen den Arten nicht einbezogen wurden. KW - Asiatischer Sommermonsun KW - ASM KW - Holozän KW - Seesedimente KW - Pollen KW - Hochland von Tibet KW - Asian Summer Monsoon KW - Holocene KW - Lake sediments KW - Pollen KW - Tibetan Plateau Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63155 ER - TY - JOUR A1 - Li, Kai A1 - Liu, Xingqi A1 - Wang, Yongbo A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Liao, Mengna A1 - Xiao, Xiayun T1 - Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: Implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The Indian Summer Monsoon (ISM) is one of the most important climate systems, whose variability and driving mechanisms are of broad interest for academic and societal communities. Here, we present a well-dated high-resolution pollen analysis from a 4.82-m long sediment core taken from Basomtso, in the southeastern Tibetan Plateau (TP), which depicts the regional climate changes of the past millennium. Our results show that subalpine coniferous forest was dominant around Basomtso from ca. 867 to ca. 750 cal. yr BP, indicating a warm and semi-humid climate. The timberline in the study area significantly decreased from ca. 750 to ca.100 cal. yr BP, and a cold climate, corresponding to the Little Ice Age (LIA) prevailed. Since ca. 100 cal. yr BP, the vegetation type changed to forest-meadow with rising temperatures and moisture. Ordination analysis reveals that the migration of vegetation was dominated by regional temperatures and then by moisture. Further comparisons between the Basomtso pollen record and the regional temperature reconstructions underscore the relevance of the Basomtso record from the southeastern TP for regional and global climatologies. Our pollen based moisture reconstruction demonstrates the strong multicentennial-scale link to ISM variability, providing solid evidence for the increase of monsoonal strengths over the past four centuries. Spectral analysis indicates the potential influence of solar forcing. However, a closer relationship has been observed between multicentennial ISM variations and Indian Ocean sea surface temperature anomalies (SSTs), suggesting that the variations in monsoonal precipitation over the southeastern TP are probably driven by the Indian Ocean Dipole on the multicentennial scale. (C) 2017 Elsevier Ltd. All rights reserved. KW - Indian Summer Monsoon KW - Late Holocene KW - Pollen record KW - Basomtso KW - Tibetan Plateau KW - Indian ocean dipole Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.10.020 SN - 0277-3791 VL - 177 SP - 235 EP - 245 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Li, Zhen A1 - Wang, Yongbo A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Ni, Jian A1 - Zhao, Yan T1 - Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000 years JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Reconstruction of past vegetation change is critical for better understanding the potential impact of future global change on the fragile alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). In this paper, pollen assemblages comprising 58 records from the QTP, spanning the past 15 kyrs, were collected to reconstruct biome compositions using a standard approach. Six forest biomes were identified mainly on the southeastern plateau, exhibiting a pattern of gradual expansion along the eastern margin during early to mid-Holocene times. The alpine meadow biome was separately identified based on an updated scheme, and showed notable westward expansions towards lower latitudes and higher altitudes during early Holocene times. Consistent patterns of migration could also be identified for the alpine steppe biome, which moved eastward during the late Holocene after 4 ka. As the dominant biome type, temperate steppe was distributed widely over the QTP with minor migration patterns, except for a progressive expansion to lower altitudes in the late Holocene times. The desert biome was inferred mainly as covering the northwestern plateau and the Qaidam Basin, in relatively restricted areas. The spatial distribution of the reconstructed biomes represent the large-scale vegetation gradient on the QTP. Monsoonal precipitation expressed predominant controls on the development of alpine ecosystems, while the variations in desert vegetation responded to regional moisture brought by the mid-latitude Westerlies. Temperature changes played relatively minor roles in the variations of alpine vegetation, but exerted more significant impacts on the forest biomes. KW - biomization KW - pollen KW - vegetation migration KW - Qinghai-Tibetan Plateau KW - holocene Y1 - 2022 U6 - https://doi.org/10.1016/j.palaeo.2022.111190 SN - 0031-0182 SN - 1872-616X VL - 604 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Laepple, Thomas A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Ni, Jian A1 - Chen, Fahu A1 - Kong, Zhaochen A1 - Liu, Guangxiu A1 - Liu, Kam-Biu A1 - Liu, Xingqi A1 - Stebich, Martina A1 - Tang, Lingyu A1 - Tian, Fang A1 - Wang, Yongbo A1 - Wischnewski, Juliane A1 - Xu, Qinghai A1 - Yan, Shun A1 - Yang, Zhenjing A1 - Yu, Ge A1 - Zhang, Yun A1 - Zhao, Yan A1 - Zheng, Zhuo T1 - Position and orientation of the westerly jet determined Holocene rainfall patterns in China JF - Nature Communications N2 - Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-09866-8 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Ni, Jian A1 - Zhao, Yan A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bolling/Allerod period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH similar to 1.125 degrees spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America. (C) 2016 Elsevier Ltd. All rights reserved. KW - Pollen KW - AVHRR KW - Modern analogue technique KW - Quantitative reconstruction KW - East Asian summer monsoon Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.001 SN - 0277-3791 VL - 137 SP - 33 EP - 44 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Li, Kai A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Wang, Yongbo T1 - Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau JF - Scientific reports N2 - Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. Y1 - 2016 U6 - https://doi.org/10.1038/srep24806 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model JF - Review of palaeobotany and palynology : an international journal N2 - Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen-vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 +/- 0.432 for Artemisia and 5.379 +/- 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 +/- 0.012). whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen-vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO(2) concentrations) and implications (such as for land surface-climate feedbacks, carbon storage, and biodiversity) of vegetation change. KW - pollen productivity KW - vegetation reconstruction KW - ERV model KW - REVEALS model KW - Holocene KW - Tibetan Plateau Y1 - 2011 U6 - https://doi.org/10.1016/j.revpalbo.2011.09.004 SN - 0034-6667 VL - 168 IS - 1 SP - 31 EP - 40 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wischnewski, Juliane A1 - Mischke, Steffen A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial - a multi-proxy, dual-site approach comparing terrestrial and aquatic signals JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - A sediment core from a closed basin lake (Lake Kuhai) from the semi-arid northeastern Tibetan Plateau was analysed for its pollen record to infer Lateglacial and post glacial vegetation and climatic change. At Lake Kuhai five major vegetation and climate shifts could be identified: (1) a change from cold and dry to relatively warmer and more moist conditions at 14.8 cal ka BP: (2) a shift to conditions of higher effective moisture and a stepwise warmer climate at 13.6 cal ka BP; (3) a further shift with increased moisture but colder conditions at 7.0 cal ka BP; (4) a return to a significantly colder and drier phase at 6.3 cal ka BP; (5) and a change back to relatively moist conditions at 2.2 cal ka BP. To investigate the response of lake ecosystems to climatic changes, statistical comparisons were made between the lake Kuhai pollen record and a formerly published ostracod and sedimentary record from the same sediment core. Furthermore, the pollen and lacustrine proxies from lake Kuhai were compared to a previously published pollen and lacustrine record from the nearby Lake Koucha. Statistical comparisons were done using non-metric multidimensional scaling and Procrustes rotation. Differences between lacustrine and pollen responses within one site could be identified, suggesting that lacustrine proxies are partly influenced by in-lake or local catchment processes, whereas the terrestrial (pollen) proxy shows a regional climate signal. Furthermore, we found regional differences in proxy response between lake Kuhai and Lake Koucha. Both pollen records reacted in similar ways to major environmental changes, with minor differences in the timing and magnitude of these changes. The lacustrine records were very similar in their timing and magnitude of response to environmental changes; however, the nature of change was at times very distinct. To place the current study in the context of Holocene moisture evolution across the Tibetan Plateau, we applied a five-scale moisture index and average link clustering to all available continuous palaeo-climate records from the Tibetan Plateau to possibly find general patterns of moisture evolution on the Plateau. However, no common regional pattern of moisture evolution during the Holocene could be detected. We assign this to complex responses of different proxies to environmental and atmospheric changes in an already very heterogeneous mountain landscape where minor differences in elevation can cause strong variation in microenvironments. Y1 - 2011 U6 - https://doi.org/10.1016/j.quascirev.2010.10.001 SN - 0277-3791 VL - 30 IS - 1-2 SP - 82 EP - 97 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Wang, Yongbo A1 - Herzschuh, Ulrike A1 - Liu, Xingqi A1 - Korup, Oliver A1 - Diekmann, Bernhard T1 - Reply to Chong Xu’s comment on: Wang, Yongbo; Herzschuh, Ulrike; Liu, Xingqi; Korup, Oliver; Diekmann, Bernhard: A high-resolution sedimentary archive from landslide-dammed Lake Mengda, north-eastern Tibetan Plateau. - Journal of Paleolimnology. - 51 (2014), S. 303 - 312 T2 - Journal of paleolimnolog Y1 - 2016 U6 - https://doi.org/10.1007/s10933-016-9937-8 SN - 0921-2728 SN - 1573-0417 VL - 57 SP - 163 EP - 164 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Jia, Weihan A1 - Anslan, Sten A1 - Chen, Fahu A1 - Cao, Xianyong A1 - Dong, Hailiang A1 - Dulias, Katharina A1 - Gu, Zhengquan A1 - Heinecke, Liv A1 - Jiang, Hongchen A1 - Kruse, Stefan A1 - Kang, Wengang A1 - Li, Kai A1 - Liu, Sisi A1 - Liu, Xingqi A1 - Liu, Ying A1 - Ni, Jian A1 - Schwalb, Antje A1 - Stoof-Leichsenring, Kathleen R. A1 - Shen, Wei A1 - Tian, Fang A1 - Wang, Jing A1 - Wang, Yongbo A1 - Wang, Yucheng A1 - Xu, Hai A1 - Yang, Xiaoyan A1 - Zhang, Dongju A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era. KW - Sedimentary ancient DNA (sedaDNA) KW - Tibetan Plateau KW - Environmental DNA KW - Taphonomy KW - Ecosystem KW - Biodiversity KW - Paleoecology KW - Paleogeography Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107703 SN - 0277-3791 SN - 1873-457X VL - 293 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Dallmeyer, Anne A1 - Claussen, Martin A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Spatial variability of Holocene changes in the annual precipitation pattern BT - a model-data synthesis for the Asian monsoon region T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 905 KW - Asian monsoon KW - holocene KW - precipitation KW - climate modelling KW - moisture reconstructions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432771 SN - 1866-8372 IS - 905 ER - TY - JOUR A1 - Wang, Yongbo A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Yang, Xiangdong A1 - Birks, H. John B. A1 - Zhang, Enlou A1 - Tong, Guobang T1 - Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Fossil pollen records have been widely used as indicators of past changes in vegetation and variations in climate. The driving mechanisms behind these vegetation changes have, however, remained unclear. In order to evaluate vegetation changes that have occurred in the northern part of the Tibetan Plateau and the possible drivers behind these changes, we have applied a moving-window Redundancy Analysis (RDA) to high resolution (10-15 years) pollen and sedimentary data from Lake Kusai covering the last 3770 years. Our analyses reveal frequent fluctuations in the relative abundances of alpine steppe and alpine desert components. The sedimentary proxies (including total organic carbon content, total inorganic carbon content, and "end-member" indices from grain-size analyses) that explain statistically some of the changes in the pollen assemblage vary significantly with time, most probably reflecting multiple underlying driving processes. Climate appears to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, a gradual decrease in vegetation cover was identified after 1500 cal a BP, after which the vegetation appears to have been affected more by extreme events such as dust-storms or fluvial erosion than by general climatic trends. Furthermore, pollen spectra over the last 600 years are shown by Procrustes analysis to be statistically different from those recovered from older samples, which we attribute to increased human impact that resulted in unprecedented changes to the vegetation composition. Overall, changes in vegetation and climate on the northern part of the Tibetan Plateau appear to have roughly followed the evolution of the Asian Summer Monsoon. After taking into account the highly significant millennial (1512 years) periodicity revealed by time-series analysis, the regional vegetation and climate changes also show variations that appear to match variations in the mid-latitude westerlies. KW - Asian Summer Monsoon KW - Late-Holocene KW - Pollen KW - Procrustes analysis KW - Redundancy analysis KW - Tibetan Plateau KW - Vegetation KW - Westerlies Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2012.06.022 SN - 0031-0182 VL - 353 IS - 8 SP - 10 EP - 20 PB - Elsevier CY - Amsterdam ER -