TY - JOUR A1 - Zielhofer, Christoph A1 - Schmidt, Johannes A1 - Reiche, Niklas A1 - Tautenhahn, Marie A1 - Ballasus, Helen A1 - Burkart, Michael A1 - Linstädter, Anja A1 - Dietze, Elisabeth A1 - Kaiser, Knut A1 - Mehler, Natascha T1 - The lower Havel River Region (Brandenburg, Germany) BT - a 230-Year-Long historical map record indicates a decrease in surface water areas and groundwater levels JF - Water N2 - Instrumental data show that the groundwater and lake levels in Northeast Germany have decreased over the past decades, and this process has accelerated over the past few years. In addition to global warming, the direct influence of humans on the local water balance is suspected to be the cause. Since the instrumental data usually go back only a few decades, little is known about the multidecadal to centennial-scale trend, which also takes long-term climate variation and the long-term influence by humans on the water balance into account. This study aims to quantitatively reconstruct the surface water areas in the Lower Havel Inner Delta and of adjacent Lake Gulpe in Brandenburg. The analysis includes the calculation of surface water areas from historical and modern maps from 1797 to 2020. The major finding is that surface water areas have decreased by approximately 30% since the pre-industrial period, with the decline being continuous. Our data show that the comprehensive measures in Lower Havel hydro-engineering correspond with groundwater lowering that started before recent global warming. Further, large-scale melioration measures with increasing water demands in the upstream wetlands beginning from the 1960s to the 1980s may have amplified the decline in downstream surface water areas. KW - long-term hydrological changes KW - historical maps KW - review of written KW - sources KW - preindustrial to industrial period KW - hydro-engineering history; KW - effects of global warming KW - drying trend KW - wetlands KW - drainage works to KW - create cropland KW - Lower Havel River Region KW - Brandenburg KW - Germany Y1 - 2022 U6 - https://doi.org/10.3390/w14030480 SN - 2073-4441 VL - 14 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - van Rees, Charles B. A1 - Waylen, Kerry A. A1 - Schmidt-Kloiber, Astrid A1 - Thackeray, Stephen J. A1 - Kalinkat, Gregor A1 - Martens, Koen A1 - Domisch, Sami A1 - Lillebo, Ana A1 - Hermoso, Virgilio A1 - Grossart, Hans-Peter A1 - Schinegger, Rafaela A1 - Decleer, Kris A1 - Adriaens, Tim A1 - Denys, Luc A1 - Jaric, Ivan A1 - Janse, Jan H. A1 - Monaghan, Michael T. A1 - De Wever, Aaike A1 - Geijzendorffer, Ilse A1 - Adamescu, Mihai C. A1 - Jähnig, Sonja C. T1 - Safeguarding freshwater life beyond 2020 BT - recommendations for the new global biodiversity framework from the European experience JF - Conservation letters N2 - Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity. KW - climate change KW - conservation KW - ecosystem services KW - rivers KW - sustainable KW - development goals KW - water resources KW - wetlands Y1 - 2020 U6 - https://doi.org/10.1111/conl.12771 SN - 1755-263X VL - 14 IS - 1 PB - Wiley CY - Hoboken ER -