TY - JOUR A1 - Zehbe, Kerstin A1 - Kollosche, Matthias A1 - Lardong, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties JF - International journal of molecular sciences N2 - Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. KW - microstructure KW - ionogels KW - ionic liquids KW - phase separation KW - mechanical properties KW - ionic conductivity Y1 - 2016 U6 - https://doi.org/10.3390/ijms17030391 SN - 1422-0067 VL - 17 PB - MDPI CY - Basel ER - TY - GEN A1 - Zehbe, Kerstin A1 - Kollosche, Matthias A1 - Lardong, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids BT - correlation between structure and mechanical and electrical properties N2 - Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 361 KW - microstructure KW - ionogels KW - ionic liquids KW - phase separation KW - mechanical properties KW - ionic conductivity Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400607 ER - TY - THES A1 - Li, Yanhong T1 - Phase separation in giant vesicles T1 - Phasentrennung in Riesenvesikeln N2 - Giant vesicles may contain several spatial compartments formed by phase separation within their enclosed aqueous solution. This phenomenon might be related to molecular crowding, fractionation and protein sorting in cells. To elucidate this process we used two chemically dissimilar polymers, polyethylene glycol (PEG) and dextran, encapsulated in giant vesicles. The dynamics of the phase separation of this polymer solution enclosed in vesicles is studied by concentration quench, i.e. exposing the vesicles to hypertonic solutions. The excess membrane area, produced by dehydration, can either form tubular structures (also known as tethers) or be utilized to perform morphological changes of the vesicle, depending on the interfacial tension between the coexisting phases and those between the membrane and the two phases. Membrane tube formation is coupled to the phase separation process. Apparently, the energy released from the phase separation is utilized to overcome the energy barrier for tube formation. The tubes may be absorbed at the interface to form a 2-demensional structure. The membrane stored in the form of tubes can be retracted under small tension perturbation. Furthermore, a wetting transition, which has been reported only in a few experimental systems, was discovered in this system. By increasing the polymer concentration, the PEG-rich phase changed from complete wetting to partial wetting of the membrane. If sufficient excess membrane area is available in the vesicle where both phases wet the membrane, one of the phases will bud off from the vesicle body, which leads to the separation of the two phases. This wetting-induced budding is governed by the surface energy and modulated by the membrane tension. This was demonstrated by micropipette aspiration experiments on vesicles encapsulating two phases. The budding of one phase can significantly decrease the surface energy by decreasing the contact area between the coexisting phases. The elasticity of the membrane allows it to adjust its tension automatically to balance the pulling force exerted by the interfacial tension of the two liquid phases at the three-phase contact line. The budding of the phase enriched with one polymer may be relevant to the selective protein transportation among lumens by means of vesicle in cells. N2 - In der wässrigen Lösung im Inneren von Riesenvesikeln können sich mehrere, räumlich getrennte Phasen ausbilden. Dieses Phänomen könnte im Zusammenhang stehen mit wichtigen Prozessen innerhalb von Zellen, wie etwa Fraktionierung und Sortieren von Proteinen, oder etwa das sog. “Molecular Crowding”. Wir studieren diesen Prozess am Beispiel von zwei unterschiedlichen Polymeren, Polyethylen Glycol (PEG) und Dextran, innerhalb von Riesenvesikeln. Die Dynamik der Phasentrennung dieser eingeschlossenen Polymerlösung lässt sich untersuchen, indem man die Vesikel einer hypertonischen Lösung aussetzt. Durch die Dehydrierung entsteht dabei überschüssige Membranfläche. Je nach Grenzflächenspannung zwischen den koexistierenden Phasen, sowie zwischen der Membran und den beiden Phasen, wird diese überschüssige Fläche entweder zur Ausbildung röhrchenartiger Strukturen verwendet, oder aber es stellen sich morphologische Veränderungen am Vesikel ein. Die Ausbildung der Membranröhrchen ist offenbar gekoppelt an den Phasentrennungsprozess: Die Energie, die bei Phasentrennung frei wird, dient offenbar dazu, die Energiebarriere der Röhrchenbildung zu überwinden. Die Röhrchen können an der Grenzfläche absorbiert werden und dort eine zweidimensionale Struktur ausbilden. Durch kleine Störungen in der Spannung kann die in Form von Röhrchen gespeicherte Membran wieder in deren Oberfläche zurückgezogen werden. Desweiteren wurde in diesem System ein Benetzungsübergang entdeckt, der bisher nur in wenigen experimentellen Systemen beobachtet werden konnte: Erhöht man die Polymerkonzentration, so geht die PEG-reiche Phase von vollständiger zu unvollständiger Benetzung der Membran über. Steht in einem Vesikel, in dem beide Phasen die Membran benetzen, ausreichend überschüssige Membranfläche zur Verfügung, so wird sich eine Phase aus dem Vesikelkörper herauswölben, was zur Trennung der beiden Phasen führt. Dieser benetzungsinduzierte Auswölbungsprozess wird durch die Oberflächenenergie bestimmt und von der Membranspannung moduliert. Dies konnte experimentell an Vesikeln gezeigt werden, die zwei Phasen beinhalten, indem durch eine Mikropipette ein Unterdruck erzeugt wurde. Die Oberflächenenergie kann durch Auswölbung einer der Phasen signifikant verringert werden, da die Kontaktfläche zwischen den koexistierenden Phasen verkleinert wird. Die Elastizität der Membran erlaubt es, die Spannung automatisch anzupassen, sodass die ziehende Kraft ausgeglichen wird, die durch die Grenzflächenspannung der beiden flüssigen Phasen an der drei-Phasen Kontaktlinie ausgeübt wird. Die Auswölbung einer durch Polymere angereicherten Phase könnte relevant sein für den selektiven Transport von Proteinen mit Vesikeln in der Zelle. KW - Membranröhrchen KW - Benetzungsübergang KW - Knospung KW - Vesikel KW - Phasentrennung KW - membrane tube KW - wetting transition KW - budding KW - vesicle KW - phase separation Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29138 ER - TY - JOUR A1 - Cardinaletti, Ilaria A1 - Kesters, Jurgen A1 - Bertho, Sabine A1 - Conings, Bert A1 - Piersimoni, Fortunato A1 - Lutsen, Laurence A1 - Nesladek, Milos A1 - Van Mele, Bruno A1 - Van Assche, Guy A1 - Vandewal, Koen A1 - Salleo, Alberto A1 - Vanderzande, Dirk A1 - Maes, Wouter A1 - Manca, Jean V. T1 - Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology JF - Journal of photonics for energy N2 - When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. KW - organic photovoltaics KW - bulk heterojunction KW - thermal stability KW - phase separation KW - lifetime Y1 - 2014 U6 - https://doi.org/10.1117/1.JPE.4.040997 SN - 1947-7988 VL - 4 PB - SPIE CY - Bellingham ER - TY - JOUR A1 - Cappel, Ute B. A1 - Svanstrom, Sebastian A1 - Lanzilotto, Valeria A1 - Johansson, Fredrik O. L. A1 - Aitola, Kerttu A1 - Philippe, Bertrand A1 - Giangrisostomi, Erika A1 - Ovsyannikov, Ruslan A1 - Leitner, Torsten A1 - Föhlisch, Alexander A1 - Svensson, Svante A1 - Martensson, Nils A1 - Boschloo, Gerrit A1 - Lindblad, Andreas A1 - Rensmo, Hakan T1 - Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells JF - ACS applied materials & interfaces N2 - Metal halide perovskites have emerged as materials of high interest for solar energy-to-electricity conversion, and in particular, the use of mixed-ion structures has led to high power conversion efficiencies and improved stability. For this reason, it is important to develop means to obtain atomic level understanding of the photoinduced behavior of these materials including processes such as photoinduced phase separation and ion migration. In this paper, we implement a new methodology combining visible laser illumination of a mixed-ion perovskite ((FAP-bI(3))(0.85)(MAPbBr(3))(0.15)) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites. KW - photoelectron spectroscopy KW - laser illumination KW - lead halide perovskite KW - ion migration KW - phase separation KW - stability Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b10643 SN - 1944-8244 VL - 9 SP - 34970 EP - 34978 PB - American Chemical Society CY - Washington ER -