TY - GEN A1 - Ozturk, Ugur A1 - Pittore, Massimiliano A1 - Behling, Robert A1 - Rößner, Sigrid A1 - Andreani, Louis A1 - Korup, Oliver T1 - How robust are landslide susceptibility estimates? T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Much of contemporary landslide research is concerned with predicting and mapping susceptibility to slope failure. Many studies rely on generalised linear models with environmental predictors that are trained with data collected from within and outside of the margins of mapped landslides. Whether and how the performance of these models depends on sample size, location, or time remains largely untested. We address this question by exploring the sensitivity of a multivariate logistic regression-one of the most widely used susceptibility models-to data sampled from different portions of landslides in two independent inventories (i.e. a historic and a multi-temporal) covering parts of the eastern rim of the Fergana Basin, Kyrgyzstan. We find that considering only areas on lower parts of landslides, and hence most likely their deposits, can improve the model performance by >10% over the reference case that uses the entire landslide areas, especially for landslides of intermediate size. Hence, using landslide toe areas may suffice for this particular model and come in useful where landslide scars are vague or hidden in this part of Central Asia. The model performance marginally varied after progressively updating and adding more landslides data through time. We conclude that landslide susceptibility estimates for the study area remain largely insensitive to changes in data over about a decade. Spatial or temporal stratified sampling contributes only minor variations to model performance. Our findings call for more extensive testing of the concept of dynamic susceptibility and its interpretation in data-driven models, especially within the broader framework of landslide risk assessment under environmental and land-use change. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1346 KW - Landslide susceptibility KW - logistic regression KW - Southern Kyrgyzstan KW - Landslide inventory KW - remote sensing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541980 SN - 1866-8372 IS - 2 ER - TY - GEN A1 - Göritz, Anna A1 - Berger, Stella A. A1 - Gege, Peter A1 - Grossart, Hans-Peter A1 - Nejstgaard, Jens C. A1 - Riedel, Sebastian A1 - Röttgers, Rüdiger A1 - Utschig, Christian T1 - Retrieval of water constituents from hyperspectral in-situ measurements under variable cloud cover BT - a case study at lake Stechlin (Germany) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a) concentration and colored dissolved organic matter (CDOM) absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM), Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 941 KW - remote sensing KW - inland water KW - hyperspectral measurements KW - in-situ KW - cloud KW - surface reflection KW - inversion KW - bio-optical modeling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459837 SN - 1866-8372 IS - 941 ER - TY - GEN A1 - Fernandez-Palomino, Carlos Antonio A1 - Hattermann, Fred A1 - Krysanova, Valentina A1 - Vega-Jacome, Fiorella A1 - Bronstert, Axel T1 - Towards a more consistent eco-hydrological modelling through multi-objective calibration BT - a case study in the Andean Vilcanota River basin, Perú T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1377 KW - Andes KW - eco-hydrology KW - SWAT KW - hydrological signatures KW - remote sensing KW - equifinality Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568766 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Coesfeld, Jacqueline A1 - Kuester, Theres A1 - Kuechly, Helga U. A1 - Kyba, Christopher C. M. T1 - Reducing variability and removing natural light from nighttime satellite imagery: A case study using the VIIRS DNB T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1181 KW - airglow KW - artificial light KW - calibration KW - VIIRS DNB KW - nightlights KW - remote sensing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524397 SN - 1866-8372 IS - 11 ER - TY - GEN A1 - Bösche, Nina Kristine A1 - Rogass, Christian A1 - Lubitz, Christin A1 - Brell, Maximilian A1 - Herrmann, Sabrina A1 - Mielke, Christian A1 - Tonn, Sabine A1 - Appelt, Oona A1 - Altenberger, Uwe A1 - Kaufmann, Hermann T1 - Hyperspectral REE (Rare Earth Element) mapping of outcrops BT - applications for neodymium detection N2 - In this study, an in situ application for identifying neodymium (Nd) enriched surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor). Because of the narrow shape and shallow absorption depth of the neodymium absorption feature, a method was developed for enhancing and extracting the necessary information for neodymium from image spectra, even under illumination conditions that are not optimal. For this purpose, the two following approaches were developed: (1) reducing noise and analyzing changing illumination conditions by averaging multitemporal image scenes and (2) enhancing the depth of the desired absorption band by deconvolving every image spectrum with a Gaussian curve while the rest of the spectrum remains unchanged (Richardson-Lucy deconvolution). To evaluate these findings, nine field samples from the Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and by conducting detailed laboratory-based geochemical rare earth element determinations. The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. To reduce the influences of non-optimal illumination, particularly at the studied site, a minimum of seven single acquisitions is required. Sharpening the neodymium absorption band allows for robust mapping, even at the outer zones of enrichment. From the geochemical investigations, we found that iron oxides decrease the applicability of the method. However, iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that are mainly enriched with rare earth elements. In summary, we found that hyperspectral spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at outcrop surfaces T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 350 KW - rare earth elements KW - imaging spectroscopy KW - neodymium KW - hyperspectral KW - HySpex KW - remote sensing KW - Fen complex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400171 ER - TY - GEN A1 - Brieger, Frederic A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Bookhagen, Bodo A1 - Zakharov, Evgenii S. A1 - Kruse, Stefan T1 - Advances in the derivation of Northeast Siberian forest metrics using high-resolution UAV-based photogrammetric point clouds T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters (mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra–taiga ecotone should be adapted to the forest structure and have a radius of >15–20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest’s stand structure. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1337 KW - UAV KW - photogrammetry KW - remote sensing KW - structure from motion KW - tundra–taiga ecotone KW - point cloud KW - forest structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473318 SN - 1866-8372 IS - 1337 ER -