TY - GEN A1 - Friedel, Eva A1 - Schlagenhauf, Florian A1 - Beck, Anne A1 - Dolan, Raymond J. A1 - Huys, Quentin J. M. A1 - Rapp, Michael Armin A1 - Heinz, Andreas T1 - The effects of life stress and neural learning signals on fluid intelligence T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Fluid intelligence (fluid IQ), defined as the capacity for rapid problem solving and behavioral adaptation, is known to be modulated by learning and experience. Both stressful life events (SLES) and neural correlates of learning [specifically, a key mediator of adaptive learning in the brain, namely the ventral striatal representation of prediction errors (PE)] have been shown to be associated with individual differences in fluid IQ. Here, we examine the interaction between adaptive learning signals (using a well-characterized probabilistic reversal learning task in combination with fMRI) and SLES on fluid IQ measures. We find that the correlation between ventral striatal BOLD PE and fluid IQ, which we have previously reported, is quantitatively modulated by the amount of reported SLES. Thus, after experiencing adversity, basic neuronal learning signatures appear to align more closely with a general measure of flexible learning (fluid IQ), a finding complementing studies on the effects of acute stress on learning. The results suggest that an understanding of the neurobiological correlates of trait variables like fluid IQ needs to take socioemotional influences such as chronic stress into account. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 621 KW - reinforcement learning KW - prediction error signal KW - ventral striatum KW - stress KW - intelligence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435140 SN - 1866-8372 IS - 621 SP - 35 EP - 43 ER - TY - GEN A1 - Ehlert, Antje A1 - Poltz, Nadine A1 - Quandte, Sabine A1 - Kohn-Henkel, Juliane A1 - Kucian, Karin A1 - Aster, Michael von A1 - Esser, Günter T1 - Taking a closer look: The relationship between pre-school domain general cognition and school mathematics achievement when controlling for intelligence T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Intelligence, as well as working memory and attention, affect the acquisition of mathematical competencies. This paper aimed to examine the influence of working memory and attention when taking different mathematical skills into account as a function of children’s intellectual ability. Overall, intelligence, working memory, attention and numerical skills were assessed twice in 1868 German pre-school children (t1, t2) and again at 2nd grade (t3). We defined three intellectual ability groups based on the results of intellectual assessment at t1 and t2. Group comparisons revealed significant differences between the three intellectual ability groups. Over time, children with low intellectual ability showed the lowest achievement in domain-general and numerical and mathematical skills compared to children of average intellectual ability. The highest achievement on the aforementioned variables was found for children of high intellectual ability. Additionally, path modelling revealed that, depending on the intellectual ability, different models of varying complexity could be generated. These models differed with regard to the relevance of the predictors (t2) and the future mathematical skills (t3). Causes and conclusions of these findings are discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 786 KW - intellectual ability KW - intelligence KW - pre-school KW - mathematical precursor KW - mathematical development KW - school mathematics KW - longitudinal KW - numerical skills KW - working memory KW - attention Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-562337 SN - 1866-8364 SP - 1 EP - 23 PB - Universitätsverlag Potsdam CY - Potsdam ER -