TY - GEN A1 - Lämke, Jörn A1 - Bäurle, Isabel T1 - Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 792 KW - remodeling atpase brahma KW - transcriptional memory KW - DNA methylation KW - transgenerational inheritance KW - acquired thermotolerance KW - Arabidopsis-thaliana KW - gene-expression KW - responses KW - protein KW - defense Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436236 SN - 1866-8372 IS - 792 ER - TY - GEN A1 - Crawford, Tim A1 - Karamat, Fazeelat A1 - Lehotai, Nóra A1 - Rentoft, Matilda A1 - Blomberg, Jeanette A1 - Strand, Åsa A1 - Björklund, Stefan T1 - Specific functions for mediator complex subunits from different modules in the transcriptional response of arabidopsis thaliana to abiotic stress T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1399 KW - regulate gene expression KW - signal transduction KW - circadian clock KW - plant Mediator KW - salicylic-acid KW - activation KW - jasmonate KW - network KW - defense KW - MED16 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-513666 SN - 1866-8372 IS - 1 ER -