TY - THES A1 - Mikat, Jürgen E. R. T1 - Optische und schwingungsspektroskopische Hochdruckuntersuchungen von Ladungsträgereigenschaften in herkömmlich und nach der Template-Methode synthetisierten leitfähigen Polypyrrolschichten N2 - Chemisch dotiertes Polypyrrol gilt als Modellsubstanz für leitfähige Polymere mit nichtdegeneriertem Grundzustand. Das elektrische Transportverhalten in dotiertem Polypyrrol wird durch lokalisierte Ladungsträger, Bipolaronen und Polaronen, bestimmt. Es besteht dabei eine enge gegenseitige Wechselwirkung zwischen der Struktur der Polymerkette und den Eigenschaften der Ladungsträger. Die in dieser Arbeit vorgestellte Kombination von Hochdruckmethodik und optischer Spektroskopie vertieft das Verständnis der Beziehung zwischen der molekularen und supramolekularen Struktur und den elektronischen und optischen Eigenschaften. Durch spezifische Synthesemethoden lassen sich unterschiedliche Strukturen in der polymeren Probe induzieren, die sich durch den Anteil an hochgeordneten Polymerketten unterscheiden. Die gezielte Veränderung dieser Strukturen durch Druckexperimente ermöglicht das Studium des Einflusses der Synthesemethoden auf die Ladungsträgereigenschaften. Für diese Studien wurden herkömmlich synthetisierte Polypyrrol-Filme und Filme, die sich aus Polypyrrol-Nanoröhren zusammensetzen (Synthese in Kernspur-membranen, "Template-Synthese") bei ansonsten gleichen Syntheseparametern untersucht. Raman- und Infrarotspektroskopie sowie UV-Vis-NIR-Absorptionsspektroskopie, die jeweils für die Hochdruckmethodik adaptiert wurden, dienten der Charakterisierung der Proben. Zusätzlich wurden temperatur- und druckabhängige Messungen des elektrischen Widerstands an den Template-Proben durchgeführt. Die Morphologie template-synthetisierter Polypyrrol-Nanoröhren und die filmbildenden Eigenschaften sowie der mögliche Aufbau von Schichtarchitekturen wurden mit transmissions- und rasterelektronenmikroskopischen Techniken untersucht. Die aus den Hochdruckexperimenten gewonnenen Daten werden in der Arbeit im Hinblick auf die Stabilität der Ladungsträger interpretiert. Im Ergebnis bewirkt die Druckerhöhung eine Dissoziation der Bipolaronen in den untersuchten Proben. Das Ladungsträger-gleichgewicht verschiebt sich dadurch mit steigendem Druck zu Zuständen mit höherem Anteil an polaronischen Ladungsträgern. Die Template-Synthese bewirkt gegenüber herkömmlich synthetisierten Proben einen höheren Anteil an Polaronen bereits bei Normaldruck, und eine Lage des Systems näher bei einem Isolator-Metall-Übergang. Die Dissoziationsrate der Bipolaronen ist für Template- und herkömmlich synthetisierte Proben vergleichbar groß und unabhängig vom Initialzustand nach der Synthese. Dieses Verhalten der Ladungsträger wird weitergehend im Rahmen eines Modells untersucht, bei dem der Einfluß benachbarter Polymerketten und der Dotandionen berücksichtigt wird. Dementsprechend können sich die Wellenfunktionen der Ladungsträger unter bestimmten Bedingungen auch auf benachbarte Ketten erstrecken (transversale Polaronen bzw. Bipolaronen). Eine solche Ausdehnung der Wellenfunktionen unter Mitwirkung der Dotandionen wurde in den untersuchten Proben nicht festgestellt. Die Wellenfunktionen der Ladungsträger besitzen demnach hauptsächlich Komponenten entlang der Polymerkette (longitudinale Polaronen bzw. Bipolaronen). Aus der Änderungsrate druckabhängiger spektraler Charakteristiken lassen sich Aussagen über den Ordnungszustand der Probe ableiten. Diese auf experimentellem Wege gefundenen Ergebnisse liefern somit Hinweise für die bisher kontrovers diskutierte Koexistenz der beiden Ladungsträgerarten Polaronen und Bipolaronen und die Größe ihrer jeweiligen Bindungsenergien. Druckerhöhung und Template-Synthese bewirken analoge Änderungen der Polymerstruktur. Sowohl höherer Druck wie auch die Template-Synthese lassen sich mit einem höheren Ordnungsgrad in den Template-Proben korrelieren. Der Ladungstransport in den Proben kann durch ein Mott Variable Range Hopping-Modell mit druckabhängiger charakteristischer Dimension beschrieben werden. Die Erhöhung des Drucks bewirkt einen Anstieg der Dimension, eine bessere Überlappung der Wellenfunktionen der Ladungsträger und eine Vergrößerung der Lokalisierungslänge der Ladungsträger. Die druckinduzierte Dissoziation der Bipolaronen beeinflußt den Ladungstransport zusätzlich durch Erhöhung der Anzahl unabhängiger Ladungsträger und verbessert diesen aufgrund stärkerer Überlappung der Wellenfunktionen. Template-Proben niedriger Synthesetemperatur zeigen bei Normaldruck eine höhere Dimension des Mott Variable Range Hoppings und eine größere Lokalisierungslänge gegenüber bei Raumtemperatur synthetisierten Proben. Kürzere Synthesezeiten bewirken einen Anstieg der Dimension bei Normaldruck und eine Verschiebung des Dimensionscrossovers zu niedrigeren Temperaturen. Template-Proben kurzer Synthesezeit zeigen geringere druckinduzierte Änderungen als solche mit langer Synthesezeit. Es wurde ein kontinuierliches Ordnungsmodell der Polypyrrol-Nanoröhren entwickelt, das dieses Verhalten beschreibt. Die Morphologie und die mechanischen Eigenschaften der Nanoröhren werden durch spezifische Syntheseparameter, wie Temperatur und Dauer, beeinflußt und können mit Transmissions- und Rasterelektronenmikroskopie beobachtet werden. Die filmbildenden Eigenschaften der Röhren hängen stark von diesen mechanischen Eigenschaften ab. Die Struktur der Filme kann dabei von einer unregelmäßigen Anordnung der Röhren bis zu nahezu parallel ausgerichteten Röhren variieren. Es wurden Möglichkeiten untersucht, die Röhren in den Filmen zu orientieren und aus diesen Filmen durch Schichtung makroskopische Architekturen mit einem hohen Grad an orientierten Röhren aufzubauen. Solche Architekturen können für verschiedene Anwendungen, z.B. in elektronischen Bauteilen oder mikroskopischen Bioreaktoren, von Interesse sein. N2 - Chemically doped polypyrrole is a model substance for conducting polymers with non-degenerate ground state. The electrical transport behaviour in doped polypyrrole is determined by localised charge carriers, polarons and bipolarons, respectively. A strong interaction between the structure of the polymer chain and the properties of the carriers exists. In this work the applicability of the combination of high pressure techniques with spectroscopy in the visible spectral range is demonstrated to improve the understanding of the relationship between the molecular and supramolecular structure and the electronic and optical properties. The use of specific synthesis methods allows the induction of different structures in the polymeric sample. These structures possess different amounts of highly ordered polymer chains. High pressure experiments are a suitable method to influence the structures in a controlled manner. In this way the effect of the different synthesis methods on the charge carrier properties can be studied. For these investigations polypyrrole films synthesised by ordinary chemical synthesis and films build up of template synthesised polypyrrole nanotubules, respectively, were fabricated under the same chemical synthesis conditions. The characterisation of the samples was carried out by Raman and infrared spectroscopy as well as optical absorption spectroscopy. All spectroscopic methods were adapted for high pressure techniques. Additionally, temperature and pressure dependent measurements of the electrical resistance were performed on the template synthesised samples. The morphology of polypyrrole nanotubules and films consisting of nanotubules as well as architectures built up from these films were examined by transmission and scanning electron microscopy. The data obtained from the high pressure experiments are interpreted in view of the stability of the charge carriers. One result is the dissoziation of bipolarons upon pressure increase in the samples under investigation with increasing pressure. The charge carrier equilibrium is shifted to states with larger amount of polarons. Template synthesis, compared with ordinarily synthesised samples, results in a larger amount of polarons at ambient pressure and a position of the samples closer to an insulator-metal transition. The dissoziation rate of bipolarons in template and ordinary synthesised samples is comparable and independent of the initial state after completed synthesis procedure. This behaviour of the charge carriers is further investigated in the frame of a model which takes the influence of neighbouring polymer chains and of dopant ions into considerations. According to this model, the wave functions of the charge carriers are also allowed to extend on neighboured chains under certain conditions (transverse polarons or bipolarons, respectively). Such an expansion of the wave functions where dopant ions act as mediating bridges of lower potential cannot be observed in the samples under investigation. Hence, the wave functions of the charge carriers contain mainly components along the polymer chain (longitudinal polarons or bipolarons, respectively). From the alteration rate of pressure dependent spectral characteristics information can be gained on the state of order in the samples. These experimental results deliver hints for the up to now controversial discussion on the coexistence of the charge carrier species polarons and bipolarons and the magnitude of their binding energies. Pressure increase and template synthesis yield analogous changes of the polymer structure. High pressure as well as template synthesis can be correlated with a higher degree of order in the samples. The charge carrier transport in the samples can be described by a Mott Variable Range Hopping model with a pressure dependent characteristic dimension. The increase of pressure results in an increasing dimension, a larger overlap of the wave function of the charge carriers and an increase of their localisation length. Additionally, pressure induced dissoziation of bipolarons improves the charge carrier transport by increasing the amount of independent charge carriers and larger overlap of the wave functions. Template synthesised samples prepared at lower synthesis temperature show a higher dimension of the Mott Variable Range Hopping and a larger localisation length than samples synthesised at room temperature. Shorter synthesis time results in an increase of the characteristic dimension at ambient pressure and a shift of the dimensional crossover to lower temperatures. Also, these samples show smaller pressure induced changes compared to samples with longer synthesis time. A model is developed describing this behaviour in the frame of a continuous order change in polypyrrole nanotubules. The morphology and the mechanical properties of the template synthesised nanotubules are influenced by specific synthesis parameters, e.g. temperature and duration, as can be observed by transmission and scanning electron microscopy. The resulting films formed by the tubules strongly depend on these mechanical properties. The structure of the films can vary between disordered arrangement and almost parallel orientation of the tubules. The possibilities for orienting of the individual tubules in films and for building macroscopic architectures by subsequent stacking of those films were investigated. Such architectures are interesting from an application point of view e.g. in electronic devices and microscopic bioreactors. KW - leitfähige Polymere KW - Hochdruck KW - Schwingungsspektroskopie KW - Absorptionsspektroskopie KW - Transmissionselektronenmikroskopie KW - Polypyrrol KW - Ladungsträger KW - P Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000069 ER - TY - JOUR A1 - Mikat, Jürgen E. R. A1 - Franco, Olga A1 - Regenstein, Wolfgang A1 - Reck, Günter A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard A1 - Orgzall, Ingo T1 - 1,3,4-oxadiazole crystals under high pressure-phase transitions and properties Y1 - 2000 ER - TY - JOUR A1 - Mikat, Jürgen E. R. A1 - Orgzall, Ingo A1 - Lorenz, Bernd A1 - Sapp, S. A1 - Martin, C. R. A1 - Burris, J. L. A1 - Hochheimer, H. D. T1 - High-pressure low-temperature electrical properties of template-synthesied polypyrrole at low synthesis temperature: Dimensional crossover under pressure Y1 - 1999 ER - TY - JOUR A1 - Mikat, Jürgen E. R. A1 - Orgzall, Ingo A1 - Sapp, S. A1 - Martin, C. R. A1 - Hochheimer, H. D. T1 - Optical investigations of conducting polypyrrole under pressure Y1 - 2000 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Lorenz, Bernd A1 - Mikat, Jürgen E. R. A1 - Dietel, Reinhard A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard T1 - Raman and IR spectroscopic investigation of aromatic 1,3,4-oxadiazole polymers and oligomers N2 - The molecular structure of poly(p-phenylene-1,3,4-oxadiazole) (POD) is investigated using i.r. and Raman spectroscopy. Both methods reveal characteristic differences for the a- and b-POD forms that are most obvious in the spectral region between 1500 and 1650 cm-1. The spectra for dimer and tetramer compounds already show the same features as found for longer chains. Based on molecular modelling calculations these differences are assigned to cis and trans conformations of the main chain segments. High pressure measurements show a linear shift of the Raman lines and support the result of the thermodynamic stability of the trans conformation. Y1 - 1997 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Lorenz, Bernd A1 - Mikat, Jürgen E. R. A1 - Reck, Günter A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard T1 - Phase transition in 1,3,4-oxadiazole crystals under high pressure Y1 - 1998 ER - TY - JOUR A1 - Orgzall, Ingo A1 - Lorenz, Bernd A1 - Mikat, Jürgen E. R. A1 - Reck, Günter A1 - Knochenhauer, Gerald A1 - Schulz, Burkhard T1 - Phase transition in 1,3,4-oxadiazole crystals under high pressure N2 - Crystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a = 0.5448 nm, b = 1.2758 nm, c = 1.9720 nm, density 1.513 g cm-3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and III show a monoclinic symmetry with space group P21/c with cell parameters a = 1.990 nm, b = 0.500 nm, c = 1.240 nm, ß = 91.7°, density 1.681 g cm-3 (phase II, determined at 1. 1 GPa) and a = 1.890 nm, b = 0.510 nm, C = 1.242 nm, ß = 89.0°, density 1.733 g cm-3 (phase 111, determined at 2.0 GPa), respectively. The high-pressure phase IV stable at least up to 5 GPa shows again an orthorhombic structure with space group Pccn with corresponding cell parameters at 2.9 GPa: a = 0.465 nm, b = 1.920 nm, c = 1.230 nm and density 1.857 g cm-3 . For the first phase a blue pressure shift of the onset of absorption by about 0.032 eV GPa has been observed that may be explained by pressure influences on the electronic conjugation of the molecule. In the intermediate and high-pressure phases II-IV the onset of absorption shifts to increased wavelengths due to larger intermolecular interactions and enhanced excitation delocalization with decreasing intermolecular spacing. Y1 - 1999 ER -