TY - JOUR A1 - Hayer, Anna A1 - de Halleux, Veronique A1 - Köhler, Anna A1 - El-Garoughy, Abdel A1 - Meijer, E. W. A1 - Barbera, Joaquin A1 - Tant, Julien A1 - Levin, Jeremy A1 - Lehmann, Matthias A1 - Gierschner, Johannes A1 - Cornil, Jerome A1 - Geerts, Yves Henri T1 - Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures N2 - A concept for highly ordered solid-state structures with bright fluorescence is proposed: liquid crystals based on tetraethynylpyrene chromophores, where the rigid core is functionalized with flexible, promesogenic alkoxy chains. The synthesis of this novel material is presented. The therniotropic properties are studied by means of differential scanning calorimetry (DSC), cross-polarized optical microscopy (POM), and X-ray diffraction. The mesogen possesses an enantiotropic Col(h) phase over a large temperature range before clearing. The material is highly fluorescent in solution and, most remarkably, in the condensed state, with a broad, strongly red shifted emission. Fluorescence quantum yields (Phi(F)) have been determined to be 70% in dichloromethane solution and 62% in the solid state. Concentration- and temperature-dependent absorption and emission studies as well as quantum-chemical calculations on isolated molecules and dimers are used to clarify the type of intermolecular interactions present as well as their influence on the fluorescence quantum yield and spectral properties of the material. The high luminescence efficiency in the solid state is ascribed to rotated chromophores, leading to an optically allowed lowest optical transition Y1 - 2006 UR - http://pubs.acs.org/journal/jpcbfk U6 - https://doi.org/10.1021/Jp0573689 SN - 1520-6106 ER - TY - JOUR A1 - Hayer, Anna A1 - Khan, A. L. T. A1 - Friend, Richard H. A1 - Köhler, Anna T1 - Morphology dependence of the triplet excited state formation and absorption in polyfluorene Y1 - 2005 ER - TY - JOUR A1 - Hayer, Anna A1 - Köhler, Anna A1 - Arisi, E. A1 - Bergenti, I. A1 - Dediu, A. A1 - Taliani, C. A1 - Al-Suti, Mohammed K. A1 - Khan, Muhammad S. T1 - Polymer light-emitting diodes with spin-polarised charge injection. Y1 - 2004 SN - 0379-6779 ER - TY - JOUR A1 - Hoffmann, Sebastian T. A1 - Jaiser, Frank A1 - Hayer, Anna A1 - Baessler, Heinz A1 - Unger, Thomas A1 - Athanasopoulos, Stavros A1 - Neher, Dieter A1 - Koehler, Anna T1 - How Do Disorder, Reorganization, and Localization Influence the Hole Mobility in Conjugated Copolymers? JF - JOURNAL OF THE AMERICAN CHEMICAL SOCIETY N2 - In order to unravel the intricate interplay between disorder effects, molecular reorganization, and charge carrier localization, a comprehensive study was conducted on hole transport in a series of conjugated alternating phenanthrene indenofluorene copolymers. Each polymer in the series contained one further comonomer comprising monoamines, diamines, or amine-free structures, whose influence on the electronic, optical, and charge transport properties was studied. The series covered a wide range of highest occupied molecular orbital (HOMO) energies as determined by cyclovoltammetry. The mobility, inferred from time-of-flight (ToF) experiments as a function of temperature and electric field, was found to depend exponentially on the HOMO energy. Since possible origins for this effect include energetic disorder, polaronic effects, and wave function localization, the relevant parameters were determined using a range of methods. Disorder and molecular reorganization were established first by an analysis of absorption and emission measurements and second by an analysis of the ToF measurements. In addition, density functional theory calculations were carried out to determine how localized or delocalized holes on a polymer chain are and to compare calculated reorganization energies with those that have been inferred from optical spectra. In summary, we conclude that molecular reorganization has little effect on the hole mobility in this system while both disorder effects and hole localization in systems with low-lying HOMOs are predominant. In particular, as the energetic disorder is comparable for the copolymers, the absolute value of the hole mobility at room temperature is determined by the hole localization associated with the triarylamine moieties. Y1 - 2013 U6 - https://doi.org/10.1021/ja308820j SN - 0002-7863 VL - 135 IS - 5 SP - 1772 EP - 1782 PB - AMER CHEMICAL SOC CY - WASHINGTON ER - TY - JOUR A1 - Mak, Chris S. K. A1 - Hayer, Anna A1 - Pascu, S. I. A1 - Watkins, Scott E. A1 - Holmes, Andrew B. A1 - Köhler, Anna A1 - Friend, Richard H. T1 - Blue-to-green electrophosphorescence of iridium-based cyclometallated materials. Y1 - 2005 UR - http://www.rsc.org/ej/CC/2005/b508695g.pdf U6 - https://doi.org/10.1039/b508695gb70 SN - 0022-4936 ER - TY - JOUR A1 - Salert, Beatrice Ch. D. A1 - Krueger, Hartmut A1 - Bagnich, Sergey A. A1 - Unger, Thomas A1 - Jaiser, Frank A1 - Al-Sa'di, Mahmoud A1 - Neher, Dieter A1 - Hayer, Anna A1 - Eberle, Thomas T1 - New polymer matrix system for phosphorescent organic light-emitting diodes and the role of the small molecular co-host JF - Journal of polymer science : A, Polymer chemistry N2 - A new matrix system for phosphorescent organic light-emitting diodes (OLEDs) based on an electron transporting component attached to an inert polymer backbone, an electronically neutral co-host, and a phosphorescent dye that serves as both emitter and hole conductor are presented. The inert co-host is used either as small molecules or covalently connected to the same chain as the electron-transporting host. The use of a small molecular inert co-host in the active layer is shown to be highly advantageous in comparison to a purely polymeric matrix bearing the same functionalities. Analysis of the dye phosphorescence decay in pure polymer, small molecular co-host film, and their blend lets to conclude that dye molecules distribute mostly in the small molecular co-host phase, where the co-host prevents agglomeration and self-quenching of the phosphorescence as well as energy transfer to the electron transporting units. In addition, the co-host accumulates at the anode interface where it acts as electron blocking layer and improves hole injection. This favorable phase separation between polymeric and small molecular components results in devices with efficiencies of about 47 cd/A at a luminance of 1000 cd/m(2). Investigation of OLED degradation demonstrates the presence of two time regimes: one fast component that leads to a strong decrease at short times followed by a slower decrease at longer times. Unlike the long time degradation, the efficiency loss that occurs at short times is reversible and can be recovered by annealing of the device at 180 degrees C. We also show that the long-time degradation must be related to a change of the optical and electrical bulk properties. KW - charge transport KW - conducting polymer KW - degradation KW - host-guest systems KW - light-emitting diodes KW - random copolymer KW - synthesis KW - UV-vis spectroscopy Y1 - 2013 U6 - https://doi.org/10.1002/pola.26409 SN - 0887-624X VL - 51 IS - 3 SP - 601 EP - 613 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zhang, Ning A1 - Hayer, Anna A1 - Al-Suti, Mohammed K. A1 - Al-Belushi, Rayya A. A1 - Khan, Muhammad S. A1 - Köhler, Anna T1 - The effect of delocalization on the exchange energy in meta- and para-linked Pt-containing carbazole polymers and monomers N2 - A series of novel platinum-containing carbazole monomers and polymers was synthesized and fully characterized by UV-VIS absorption, luminescence, and photoinduced absorption studies. In these compounds, a carbazole unit is incorporated into the main chain via either a para- or a meta-linkage. We discuss the effects of linkage and polymerization on the energy levels of S-1, T-1, and T-n. The S-1-T-1 splitting observed for the meta-linked monomer (0.4 eV) is only half of that in the para-linked monomer (0.8 eV). Upon polymerization, the exchange energy in the para- linked compound reduces, yet still remains larger than in the meta-linked polymer. We attribute the difference in exchange energy to the difference in wave function overlap between electron and hole in these compounds. (c) 2006 American Institute of Physics Y1 - 2006 UR - http://scitation.aip.org/getpdf/servlet/ GetPDFServlet?filetype=pdf&id=JCPSA6000124000024244701000001&idtype=cvips&doi=10.1063/1.2200351&prog=normal U6 - https://doi.org/10.1063/1.2200351 ER -