TY - JOUR A1 - Coch, Caroline A1 - Lamoureux, Scott F. A1 - Knoblauch, Christian A1 - Eischeid, Isabell A1 - Fritz, Michael A1 - Obu, Jaroslav A1 - Lantuit, Hugues T1 - Summer rainfall dissolved organic carbon, solute, and sediment fluxes in a small Arctic coastal catchment on Herschel Island (Yukon Territory, Canada) JF - Artic science N2 - Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could bemobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014-2016, mean dissolved organic matter flux over 17 days amounted to 82.7 +/- 30.7 kg km(-2) and mean total dissolved solids flux to 5252 +/- 1224 kg km(-2). Flux of suspended sediment was 7245 kg km(-2) in 2015, and 369 kg km(-2) in 2016. We found that 2.0% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes. KW - permafrost KW - hydrology KW - lateral fluxes KW - hysteresis KW - climate change Y1 - 2018 U6 - https://doi.org/10.1139/as-2018-0010 SN - 2368-7460 VL - 4 IS - 4 SP - 750 EP - 780 PB - Canadian science publishing CY - Ottawa ER - TY - JOUR A1 - Creighton, Andrea L. A1 - Parsekian, Andrew D. A1 - Angelopoulos, Michael A1 - Jones, Benjamin M. A1 - Bondurant, A. A1 - Engram, M. A1 - Lenz, Josefine A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Babcock, E. A1 - Arp, Christopher D. T1 - Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes JF - Journal of geophysical research : Solid earth N2 - Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed-talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal-scale expansion rates of 0.16, 0.38, and 0.58m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum-Arctic coastal lowland regions. KW - geophysics KW - permafrost KW - thermokarst KW - electromagnetic KW - lake Y1 - 2018 U6 - https://doi.org/10.1029/2018JB016121 SN - 2169-9313 SN - 2169-9356 VL - 123 IS - 11 SP - 9310 EP - 9323 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Drewes, Julia A1 - Moreiras, Stella A1 - Korup, Oliver T1 - Permafrost activity and atmospheric warming in the Argentinian Andes JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Rock glaciers are permafrost or glacial landforms of debris and ice that deform under the influence of gravity. Recent estimates hold that, in the semiarid Chilean Andes for example, active rock glaciers store more water than glaciers. However, little is known about how many rock glaciers might decay because of global warming and how much this decay might contribute to water and sediment release. We investigated an inventory of >6500 rock glaciers in the Argentinian Andes, spanning the climatic gradient from the Desert Andes to cold-temperate Tierra del Fuego. We used active rock glaciers as a diagnostic of permafrost, assuming that the toes mark the 0 degrees C isotherm in climate scenarios for the twenty-first century and their impact on freezing conditions near the rock glacier toes. We find that, under future worst case warming, up to 95% of rock glaciers in the southern Desert Andes and in the Central Andes will rest in areas above 0 degrees C and that this freezing level might move up more than twice as much (similar to 500 m) as during the entire Holocene (similar to 200 m). Many active rock glaciers are already well below the current freezing level and exemplify how local controls may confound regional prognoses. A Bayesian Multifactor Analysis of Variance further shows that only in the Central Andes are the toes of active rock glaciers credibly higher than those of inactive ones. Elsewhere in the Andes, active and inactive rock glaciers occupy indistinguishable elevation bands, regardless of aspect, the formation mechanism, or shape of rock glaciers. The state of rock glacier activity predicts differences in elevations of toes to 140 m at best so that regional inference of the distribution of discontinuous permafrost from rock-glacier toes cannot be more accurate than this in the Argentinian Andes. We conclude that the Central Andes-where rock glaciers are largest, cover the most area, and have a greater density than glaciers-is likely to experience the most widespread disturbance to the thermal regime of the twenty-first century. (C) 2018 Elsevier B.V. All rights reserved. KW - rock glacier KW - Argentina KW - permafrost KW - climate change Y1 - 2018 U6 - https://doi.org/10.1016/j.geomorph.2018.09.005 SN - 0169-555X SN - 1872-695X VL - 323 SP - 13 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dvornikov, Yury A1 - Leibman, Marina A1 - Heim, Birgit A1 - Bartsch, Annett A1 - Herzschuh, Ulrike A1 - Skorospekhova, Tatiana A1 - Fedorova, Irina A1 - Khomutov, Artem A1 - Widhalm, Barbara A1 - Gubarkov, Anatoly A1 - Rößler, Sebastian T1 - Terrestrial CDOM in lakes of Yamal Peninsula BT - Connection to lake and lake catchment properties JF - Remote Sensing N2 - In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces. KW - CDOM KW - lakes KW - lake catchments KW - permafrost KW - Yamal KW - remote sensing data Y1 - 2018 U6 - https://doi.org/10.3390/rs10020167 SN - 2072-4292 VL - 10 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tape, Ken D. A1 - Jones, Benjamin M. A1 - Arp, Christopher D. A1 - Nitze, Ingmar A1 - Grosse, Guido T1 - Tundra be dammed BT - beaver colonization of the arctic JF - Global change biology N2 - Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293km(2)) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic. KW - arctic tundra KW - beaver KW - climate change KW - permafrost KW - population recovery KW - salmon KW - shrub expansion KW - stream Y1 - 2018 U6 - https://doi.org/10.1111/gcb.14332 SN - 1354-1013 SN - 1365-2486 VL - 24 IS - 10 SP - 4478 EP - 4488 PB - Wiley CY - Hoboken ER -