TY - THES A1 - Mitzscherling, Julia T1 - Microbial communities in submarine permafrost and their response to permafrost degradation and warming N2 - The Arctic region is especially impacted by global warming as temperatures in high latitude regions have increased and are predicted to further rise at levels above the global average. This is crucial to Arctic soils and the shallow shelves of the Arctic Ocean as they are underlain by permafrost. Perennially frozen ground is a habitat for a large number and great diversity of viable microorganisms, which can remain active even under freezing conditions. Warming and thawing of permafrost makes trapped soil organic carbon more accessible to microorganisms. They can transform it to the greenhouse gases carbon dioxide, methane and nitrous oxide. On the other hand, it is assumed that thawing of the frozen ground stimulates microbial activity and carbon turnover. This can lead to a positive feedback loop of warming and greenhouse gas release. Submarine permafrost covers most areas of the Siberian Arctic Shelf and contains a large though unquantified carbon pool. However, submarine permafrost is not only affected by changes in the thermal regime but by drastic changes in the geochemical composition as it formed under terrestrial conditions and was inundated by Holocene sea level rise and coastal erosion. Seawater infiltration into permafrost sediments resulted in an increase of the pore water salinity and, thus, in thawing of permafrost in the upper sediment layers even at subzero temperatures. The permafrost below, which was not affected by seawater, remained ice-bonded, but warmed through seawater heat fluxes. The objective of this thesis was to study microbial communities in submarine permafrost with a focus on their response to seawater influence and long-term warming using a combined approach of molecular biological and physicochemical analyses. The microbial abundance, community composition and structure as well as the diversity were investigated in drill cores from two locations in the Laptev Sea, which were subjected to submarine conditions for centuries to millennia. The microbial abundance was measured through total cell counts and copy numbers of the 16S rRNA gene and of functional genes. The latter comprised genes which are indicative for methane production (mcrA) and sulfate reduction (dsrB). The microbial community was characterized by high-throughput-sequencing of the 16S rRNA gene. Physicochemical analyses included the determination of the pore water geochemical and stable isotopic composition, which were used to describe the degree of seawater influence. One major outcome of the thesis is that the submarine permafrost stratified into different so-called pore water units centuries as well as millennia after inundation: (i) sediments that were mixed with seafloor sediments, (ii) sediments that were infiltrated with seawater, and (iii) sediments that were unaffected by seawater. This stratification was reflected in the submarine permafrost microbial community composition only millennia after inundation but not on time-scales of centuries. Changes in the community composition as well as abundance were used as a measure for microbial activity and the microbial response to changing thermal and geochemical conditions. The results were discussed in the context of permafrost temperature, pore water composition, paleo-climatic proxies and sediment age. The combination of permafrost warming and increasing salinity as well as permafrost warming alone resulted in a disturbance of the microbial communities at least on time-scales of centuries. This was expressed by a loss of microbial abundance and bacterial diversity. At the same time, the bacterial community of seawater unaffected but warmed permafrost was mainly determined by environmental and climatic conditions at the time of sediment deposition. A stimulating effect of warming was observed only in seawater unaffected permafrost after millennia-scale inundation, visible through increased microbial abundance and reduced amounts of substrate. Despite submarine exposure for centuries to millennia, the community of bacteria in submarine permafrost still generally resembled the community of terrestrial permafrost. It was dominated by phyla like Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes and Proteobacteria, which can be active under freezing conditions. Moreover, the archaeal communities of both study sites were found to harbor high abundances of marine and terrestrial anaerobic methane oxidizing archaea (ANME). Results also suggested ANME populations to be active under in situ conditions at subzero temperatures. Modeling showed that potential anaerobic oxidation of methane (AOM) could mitigate the release of almost all stored or microbially produced methane from thawing submarine permafrost. Based on the findings presented in this thesis, permafrost warming and thawing under submarine conditions as well as permafrost warming without thaw are supposed to have marginal effects on the microbial abundance and community composition, and therefore likely also on carbon mobilization and the formation of methane. Thawing under submarine conditions even stimulates AOM and thus mitigates the release of methane. N2 - Die globale Erwärmung beeinträchtigt die Arktische Region besonders stark. Im Vergleich zum globalen Mittel sind die Temperaturen in den hohen Breitengraden am stärksten gestiegen und werden voraussichtlich auch weiterhin am stärksten ansteigen. Das ist äußerst kritisch, da arktische Böden und die flachen Schelfgebiete des Arktischen Ozeans von Permafrost geprägt sind. Dieser mehrjährig gefrorene Boden ist ein Habitat für eine große Anzahl und Diversität von Mikroorganismen, die lebensfähig sind und auch unter gefrorenen Bedingungen aktiv sein können. Einerseits machen eine Erwärmung und das Tauen des Permafrosts gespeicherten organischen Kohlenstoff zugänglicher für die Mikroorganismen. Diese können den Kohlenstoff in die Treibhausgase Kohlenstoffdioxid, Methan und Distickstoffoxid umwandeln. Andererseits stimuliert das Tauen des gefrorenen Bodens die mikrobielle Aktivität und den Kohlenstoffumsatz. Das kann zu einem sich verstärkenden Rückkopplungsprozess aus Erwärmung und Freisetzung von Treibhausgasen führen. Submariner Permafrost umfasst den größten Teil des Ostsibirischen Arktisschelfs und enthält ein großes, wenn auch nicht quantifiziertes Kohlenstoffreservoir. Der submarine Permafrost wird jedoch nicht nur durch Veränderungen des Wärmehaushalts beeinflusst, sondern auch durch drastische Veränderungen in der geochemischen Zusammensetzung. Durch den holozänen Meeresspiegelanstieg und durch Küstenerosion wurde der unter terrestrischen Bedingungen gebildete Permafrost überflutet. Ein Eindringen von Meerwasser führte in den Permafrostsedimenten zu einem Anstieg der Porenwasser-Salinität und dadurch zum Tauen des Permafrosts in den oberen Schichten, sogar bei Temperaturen unter 0 °C. Tiefer liegende Permafrostsedimente, die (noch) nicht vom Meerwasser beeinflusst wurden, blieben eis-gebunden, aber begannen sich durch den Wärmestrom des Meerwassers zu erwärmen. Das Ziel dieser Dissertation war es, die mikrobiellen Gemeinschaften in submarinem Permafrost zu untersuchen. Der Fokus lag dabei auf der Reaktion der Gemeinschaften auf den Einfluss des Meerwassers und die Langzeiterwärmung. Die Arbeit nutzt dafür einen kombinierten Ansatz aus molekularbiologischen und physikochemischen Analysen. Die mikrobielle Abundanz, Gemeinschaftszusammensetzung und -struktur sowie die Diversität wurden in Sedimentbohrkernen zweier Standorte in der Laptew See untersucht, welche seit Jahrhunderten bis Jahrtausenden submarinen Bedingungen ausgesetzt waren. Die mikrobielle Abundanz wurde mit Hilfe von Zellzahlen und Kopienzahlen des 16S rRNA Gens sowie funktioneller Gene bestimmt, die kennzeichnend für die Methanproduktion (mcrA) und Sulfatreduktion (dsrB) sind. Die mikrobielle Gemeinschaft wurde mit Hilfe der Hochdurchsatz-Sequenzierung des 16S rRNA Gens charakterisiert. Physikochemische Analysen beinhalteten die Untersuchung der geochemischen Zusammensetzung der Porenwassers und der stabilen Wasserisotopen. Beide Zusammensetzungen wurden genutzt, um den Grad des Meerwassereinflusses auf die Permafrostsedimente zu beschreiben. Ein Hauptergebnis der Arbeit ist, dass sich submariner Permafrost sowohl nach Jahrhunderten als auch nach Jahrtausenden der Überflutung in verschiedene Schichten, sogenannte Porenwassereinheiten, unterteilen lässt: (i) Sedimente, die sich mit dem Meeresboden vermischt haben, (ii) Sedimente, die vom Meerwasser infiltriert wurden und (iii) Sedimente, die vom Meerwasser unbeeinflusst sind. Diese Schichtenbildung spiegelt sich erst nach jahrtausendelanger Überflutung auch in der mikrobiellen Gemeinschaftszusammensetzung wider, nicht jedoch nach Jahrhunderten. Änderungen sowohl in der Gemeinschaftszusammensetzung als auch in der Abundanz wurden als Maß für mikrobielle Aktivität und die mikrobielle Reaktion auf die sich ändernden thermischen und geochemischen Bedingungen genutzt. Die Ergebnisse wurden im Kontext von Permafrosttemperatur, Porenwasserzusammensetzung, paleoklimatischen Proxys und dem Sedimentalter diskutiert. Die Kombination aus Permafrosterwärmung und steigender Salinität, sowie die Permafrosterwärmung allein, resultierten auf Zeitskalen von Jahrhunderten in einer Störung der mikrobiellen Gemeinschaft. Dies drückte sich durch einen Verlust der mikrobiellen Abundanz und der bakteriellen Diversität aus. Gleichzeitig wurde die bakterielle Gemeinschaft im vom Meerwasser unbeeinflussten, aber erwärmten Permafrost hauptsächlich durch die Umweltbedingungen und das Klima zur Zeit der Sedimentablagerung geprägt. Ein stimulierender Einfluss der Erwärmung konnte im vom Meerwasser unbeeinflussten Permafrost erst nach jahrtausendelanger Überflutung beobachtet werden. Dies wurde durch einen Anstieg in der mikrobiellen Abundanz und einer Abnahme der organischen Substrate sichtbar. Obwohl die bakteriellen Gemeinschaften des Permafrostes submarinen Bedingungen für Jahrhunderte bis Jahrtausende ausgesetzt waren, unterschieden sie sich kaum von den Gemeinschaften im terrestrischen Permafrost. Die Gemeinschaft des submarinen Permafrosts wurde von Phyla wie Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes und Proteobacteria dominiert, welche auch unter gefrorenen Bedingungen aktiv sein können. Darüber hinaus enthielten die archaellen Gemeinschaften an beiden Standorten eine hohe Anzahl von marinen und terrestrischen anaerob methan-oxidierenden Archaeen (ANME), bei denen eine Aktivität unter in situ Bedingungen bei Minusgraden angenommen wird. Eine Modellierung zeigte, dass die anaerobe Oxidation von Methan (AOM) potenziell fast die gesamte Menge des gespeicherten und mikrobiell produzierten Methans in tauendem submarinem Permafrost reduzieren könnte. Die Ergebnisse der Arbeit deuten darauf hin, dass das Tauen von Permafrost unter submarinen Bedingungen sowie eine Erwärmung ohne Tauen marginale Effekte auf die Abundanz und Zusammensetzung der mikrobiellen Gemeinschaften und somit wahrscheinlich auch auf die Mobilisierung von Kohlenstoff in Form von Methan hat. Das Tauen unter submarinen Bedingungen stimuliert sogar AOM und reduziert somit den Ausstoß von Methan. T2 - Mikrobielle Gemeinschaften in submarinem Permafrost and ihre Reaktion auf die Degradierung und Erwärmung des Permafrosts KW - Microbial communities KW - Subsea permafrost KW - Arctic KW - Mikrobielle Gemeinschaften KW - Submariner Permafrost KW - Arktis KW - Submarine permafrost KW - next generation sequencing KW - Hochdurchsatzsequenzierung KW - Permafrostdegradation KW - permafrost degradation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471240 ER - TY - THES A1 - Lenz, Josefine T1 - Thermokarst dynamics in central-eastern Beringia T1 - Thermokarstdynamik im zentral-östlichen Beringia BT - insights from permafrost and lacustrine sediment cores BT - Einblicke durch Permafrost- und Seesedimentkerne N2 - Widespread landscape changes are presently observed in the Arctic and are most likely to accelerate in the future, in particular in permafrost regions which are sensitive to climate warming. To assess current and future developments, it is crucial to understand past environmental dynamics in these landscapes. Causes and interactions of environmental variability can hardly be resolved by instrumental records covering modern time scales. However, long-term environmental variability is recorded in paleoenvironmental archives. Lake sediments are important archives that allow reconstruction of local limnogeological processes as well as past environmental changes driven directly or indirectly by climate dynamics. This study aims at reconstructing Late Quaternary permafrost and thermokarst dynamics in central-eastern Beringia, the terrestrial land mass connecting Eurasia and North America during glacial sea-level low stands. In order to investigate development, processes and influence of thermokarst dynamics, several sediment cores from extant lakes and drained lake basins were analyzed to answer the following research questions: 1. When did permafrost degradation and thermokarst lake development take place and what were enhancing and inhibiting environmental factors? 2. What are the dominant processes during thermokarst lake development and how are they reflected in proxy records? 3. How did, and still do, thermokarst dynamics contribute to the inventory and properties of organic matter in sediments and the carbon cycle? Methods applied in this study are based upon a multi-proxy approach combining sedimentological, geochemical, geochronological, and micropaleontological analyses, as well as analyses of stable isotopes and hydrochemistry of pore-water and ice. Modern field observations of water quality and basin morphometrics complete the environmental investigations. The investigated sediment cores reveal permafrost degradation and thermokarst dynamics on different time scales. The analysis of a sediment core from GG basin on the northern Seward Peninsula (Alaska) shows prevalent terrestrial accumulation of yedoma throughout the Early to Mid Wisconsin with intermediate wet conditions at around 44.5 to 41.5 ka BP. This first wetland development was terminated by the accumulation of a 1-meter-thick airfall tephra most likely originating from the South Killeak Maar eruption at 42 ka BP. A depositional hiatus between 22.5 and 0.23 ka BP may indicate thermokarst lake formation in the surrounding of the site which forms a yedoma upland till today. The thermokarst lake forming GG basin initiated 230 ± 30 cal a BP and drained in Spring 2005 AD. Four years after drainage the lake talik was still unfrozen below 268 cm depth. A permafrost core from Mama Rhonda basin on the northern Seward Peninsula preserved a full lacustrine record including several lake phases. The first lake generation developed at 11.8 cal ka BP during the Lateglacial-Early Holocene transition; its old basin (Grandma Rhonda) is still partially preserved at the southern margin of the study basin. Around 9.0 cal ka BP a shallow and more dynamic thermokarst lake developed with actively eroding shorelines and potentially intermediate shallow water or wetland phases (Mama Rhonda). Mama Rhonda lake drainage at 1.1 cal ka BP was followed by gradual accumulation of terrestrial peat and top-down refreezing of the lake talik. A significant lower organic carbon content was measured in Grandma Rhonda deposits (mean TOC of 2.5 wt%) than in Mama Rhonda deposits (mean TOC of 7.9 wt%) highlighting the impact of thermokarst dynamics on biogeochemical cycling in different lake generations by thawing and mobilization of organic carbon into the lake system. Proximal and distal sediment cores from Peatball Lake on the Arctic Coastal Plain of Alaska revealed young thermokarst dynamics since about 1,400 years along a depositional gradient based on reconstructions from shoreline expansion rates and absolute dating results. After its initiation as a remnant pond of a previous drained lake basin, a rapidly deepening lake with increasing oxygenation of the water column is evident from laminated sediments, and higher Fe/Ti and Fe/S ratios in the sediment. The sediment record archived characterizing shifts in depositional regimes and sediment sources from upland deposits and re-deposited sediments from drained thaw lake basins depending on the gradually changing shoreline configuration. These changes are evident from alternating organic inputs into the lake system which highlights the potential for thermokarst lakes to recycle old carbon from degrading permafrost deposits of its catchment. The lake sediment record from Herschel Island in the Yukon (Canada) covers the full Holocene period. After its initiation as a thermokarst lake at 11.7 cal ka BP and intense thermokarst activity until 10.0 cal ka BP, the steady sedimentation was interrupted by a depositional hiatus at 1.6 cal ka BP which likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines. The specific setting of the lake on a push moraine composed of marine deposits is reflected in the sedimentary record. Freshening of the maturing lake is indicated by decreasing electrical conductivity in pore-water. Alternation of marine to freshwater ostracods and foraminifera confirms decreasing salinity as well but also reflects episodical re-deposition of allochthonous marine sediments. Based on permafrost and lacustrine sediment records, this thesis shows examples of the Late Quaternary evolution of typical Arctic permafrost landscapes in central-eastern Beringia and the complex interaction of local disturbance processes, regional environmental dynamics and global climate patterns. This study confirms that thermokarst lakes are important agents of organic matter recycling in complex and continuously changing landscapes. N2 - Derzeit werden deutliche Landschaftsveränderungen in der Arktis beobachtet, welche sich höchstwahrscheinlich zukünftig v.a. in den Permafrostregionen verstärken, da diese besonders empfindlich auf Klimaveränderungen reagieren. Um derzeitige und zukünftige Entwicklungen einschätzen zu können, ist es wichtig vergangene Umweltprozesse zu verstehen. Ursachen und Wechselwirkungen von Umweltveränderungen können nur bedingt durch instrumentelle Aufzeichnungen erklärt werden, doch Paleo-Umweltarchive können weit in die Vergangenheit reichende Umweltdynamiken aufzeichnen. Seesedimente sind wichtige Archive, die lokale limnogeologische Prozesse, aber auch direkt oder indirekt klimatisch gesteuerte Umweltveränderungen der Vergangenheit aufzeichnen. Ziel der vorliegenden Arbeit ist es, spätquartäre Permafrost- und Thermokarstdynamik im zentral-östlichen Beringia zu rekonstruieren. Beringia umfasst jene terrestrische Landmasse, welche Eurasien und Nord-Amerika zu Zeiten von Meeresspiegeltiefständen verband. Um die Entwicklung, die Prozesse und den Einfluss von Thermokarstdynamik zu untersuchen, wurden mehrere Sedimentkerne von rezenten Seen und ausgelaufenen Seebecken analysiert, um folgende Forschungsfragen zu beantworten: 1. Zu welcher Zeit degradierte Permafrost und wann entwickelten sich Thermokarstseen? Was waren hemmende oder verstärkende Faktoren? 2. Was sind dominierende Prozesse während der Entwicklung von Thermokarstseen und wie spiegeln sich diese in Proxy-Aufzeichnungen wieder? 3. Wie hat Thermokarstdynamik damals und heute zur Bedeutung von organischer Substanz in Sedimenten und im Kohlenstoffkreislauf beigetragen? Die in dieser Arbeit angewandten Methoden basieren auf einem sogenannten „multi-proxy“ Ansatz, der sedimentologische, geochemische, geochronologische und mikropaläontologische Analysen, sowie die Untersuchung von stabilen Isotopen und die Hydrochemie von Porenwasser und -eis, verbindet. Feldmessungen der modernen Wasserqualität und Beckenmorphometrie komplettieren die Umweltuntersuchungen. Auf Grundlage der untersuchten Sedimentkerne lässt sich die Degradation von Permafrost und die Dynamik von Thermokarst auf zeitlich verschiedenen Skalen rekonstruieren. Die Analyse eines Sedimentkerns vom GG-Becken auf der nördlichen Seward-Halbinsel (Alaska) zeigt eine vorwiegend terrestrische Akkumulation von Yedoma während des Früh- und Mittel-Wisconsin mit zwischenzeitlich feuchteren Verhältnissen zwischen 44,5 und 41,5 ka BP. Diese frühe Feuchtgebietsphase wurde durch die Akkumulation einer 1 m dicken Tephra-Lage beendet, welche sehr wahrscheinlich von der Eruption des heutigen South Killeak Maar vor etwa 42.000 Jahren stammt. Eine Schichtlücke im Sedimentkern von etwa 22,5 und 0,23 ka BP gibt einen Hinweis auf Thermokarstentwicklung in der Umgebung der Kernlokation, welche bis heute ein Yedoma-Rudiment bildet. Der Thermokarstsee, der GG-Becken formte, entstand 230 ± 30 cal a BP und drainierte im Frühling 2005 AD. Vier Jahre nach der Drainage war der Talik des Sees in einer Tiefe von 268 cm noch ungefroren. Ein Permafrostkern vom Mama Rhonda-Becken auf der nördlichen Seward-Halbinsel archivierte eine vollständige limnische Fazies mit mehreren Seephasen. Die erste Seegeneration entstand am Übergang vom Spätglazial zum Frühholozän um etwa 11,8 cal ka BP; das alte Seebecken (Grandma Rhonda) ist bis heute südlich der Kernlokation erhalten. Etwa um 9,0 cal ka BP entwickelte sich ein eher flaches und dynamisches Seesystem mit aktiv erodierenden Ufern und potenziell zwischengeschalteten Flachwasser- oder Feuchtgebietsphasen (Mama Rhonda). Die Drainage vom Mama Rhonda-See etwa 1,1 cal ka BP wurde gefolgt von gradueller Torfakkumulation und einem von oben zurückfrierenden See-Talik Es wurde ein deutlich geringerer organischer Kohlenstoff-Gehalt in Grandma Rhonda-Ablagerungen (TOC im Mittel 2,5 Gew.-%) festgestellt, als in Mama Rhonda Ablagerungen (TOC im Mittel 7,9 Gew.-%). Dies zeigt den bedeutenden Einfluss von Thermokarst auf biogeochemische Kreisläufe, da in verschiedenen Seegenerationen organischen Kohlenstoff durch Permafrost-Tauen im Seesystem mobilisiert wird. Seesedimentkerne aus der Uferzone und dem zentralen Bereich von Peatball Lake auf der Arktischen Küstenebene von Alaska, ergaben eine junge Thermokarstdynamik von 1.400 Jahren, welche auf der Basis von absoluten Datierungen und Uferexpansionsraten rekonstruiert wurde. Nach der Seeinitiierung als Rest-See eines zuvor ausgelaufenen Seebeckens, vertiefte sich Peatball Lake verhältnismäßig schnell mit zunehmender Sauerstoffanreicherung der Wassersäule, wie aus laminierten Sedimenten und hohen Fe/Ti- und Fe/S-Verhältnissen im Sediment ersichtlich ist. Die Sedimente von Peatball Lake archivierten einen Wechsel des Ablagerungsregimes bei Ausdehnung der Seefläche und einen Wechsel der Sedimentquelle von ursprünglichen, rein terrestrischen Ablagerungen und bereits umgelagerten Sedimenten aus drainierten Seebecken. Angezeigt wird dieser Wechsel durch eine Veränderung im Eintrag organischen Materials in das Seesystem, was wiederum das Potential von Thermokarstseen bei der Aufarbeitung alten Kohlenstoffs aus degradierendem Permafrost im Einzugsgebiet verdeutlicht. Der Seesedimentkern von der Herschel Insel im Yukon (Kanada) deckt das gesamte Holozän ab. Nach der Seeentstehung um 11,7 cal ka BP und einer Zeit intensiver Thermokarstaktivität bis 11,0 cal ka BP, wird die Phase einer eher kontinuierlichen Sedimentation von einer Schichtlücke um 1,6 cal ka BP unterbrochen. Diese wurde entweder durch die Drainage des Sees oder einer allochthonen Rutschung instabiler Uferlinien verursacht. Die spezielle Situation des Sees auf einer Stauchendmoräne aus marinem Material spiegelt sich auch in dem Seesedimentarchiv wieder. Das Aussüßen des wachsenden Sees wird durch die abnehmende elektrische Leitfähigkeit im Porenwasser angezeigt. Der Wechsel von marinen und Süßwasserostrakoden- und Foraminiferengemeinschaften bestätigt zum einen die abnehmende Salinität des Sees, aber zeigt zum anderen auch episodische Umlagerung von allochthonem, marinem Sediment. Auf der Grundlange von Permafrost- und Seesedimentkernen zeigt diese Arbeit Beispiele spätquartärer Entwicklungsgeschichte typischer Arktischer Permafrostlandschaften im zentral-östlichen Beringia. Es werden komplexe Zusammenhänge zwischen lokalen Störungsprozessen, regionaler Umweltdynamik und globalen Klimaveränderungen aufgezeigt. Thermokarstseen spielen dabei eine wichtige Rolle im sich kontinuierlich verändernden Landschaftsbild der hohen Breiten und im Stoffkreislauf bei der Aufarbeitung organischer Substanz. KW - paleolimnology KW - permafrost degradation KW - periglacial landscape evolution KW - thermokarst processes KW - carbon cycling KW - central-eastern Beringia KW - Paläolimnologie KW - Permafrostdegradation KW - periglaziale Landschaftsentwicklung KW - Thermokarstprozesse KW - Kohlenstoffkreislauf KW - zentral-östliches Beringia Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101364 ER -