TY - CHAP A1 - Reimer, O. A1 - Aharonian, Felix A. A1 - Hinton, J. A1 - Hofmann, W. A1 - Hoppe, S. A1 - Raue, M. A1 - Reimer, A. T1 - VHE gamma-rays from Westerlund 2 and implications for the inferred energetics N2 - The H.E.S.S. collaboration recently reported the discovery of VHE γ-ray emission coincident with the young stellar cluster Westerlund 2. This system is known to host a population of hot, massive stars, and, most particularly, the WR binary WR 20a. Particle acceleration to TeV energies in Westerlund 2 can be accomplished in several alternative scenarios, therefore we only discuss energetic constraints based on the total available kinetic energy in the system, the actual mass loss rates of respective cluster members, and implied gamma-ray production from processes such as inverse Compton scattering or neutral pion decay. From the inferred gammaray luminosity of the order of 1035erg/s, implications for the efficiency of converting available kinetic energy into non-thermal radiation associated with stellar winds in the Westerlund 2 cluster are discussed under consideration of either the presence or absence of wind clumping. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18172 ER - TY - CHAP A1 - Reimer, A. T1 - Clumping effects on non-thermal particle spectra in massive star systems N2 - Observational evidence exists that winds of massive stars are clumped. Many massive star systems are known as non-thermal particle production sites, as indicated by their synchrotron emission in the radio band. As a consequence they are also considered as candidate sites for non-thermal high-energy photon production up to gamma-ray energies. The present work considers the effects of wind clumpiness expected on the emitting relativistic particle spectrum in colliding wind systems, built up from the pool of thermal wind particles through diffusive particle acceleration, and taking into account inverse Compton and synchrotron losses. In comparison to a homogeneous wind, a clumpy wind causes flux variations of the emitting particle spectrum when the clump enters the wind collision region. It is found that the spectral features associated with this variability moves temporally from low to high energy bands with the time shift between any two spectral bands being dependent on clump size, filling factor, and the energy-dependence of particle energy gains and losses. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18246 ER -