TY - JOUR A1 - Leussu, R. A1 - Usoskin, IIlya G. A1 - Valliappan, Senthamizh Pavai A1 - Diercke, Andrea A1 - Arlt, Rainer A1 - Denker, Carsten A1 - Mursula, K. T1 - Wings of the butterfly BT - sunspot groups for 1826-2015 JF - Astronomy and astrophysics : an international weekly journal N2 - The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Sporer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30 degrees-45 degrees) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20 degrees-30 degrees) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2 degrees-10 degrees) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. KW - Sun: activity KW - sunspots KW - history and philosophy of astronomy Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629533 SN - 1432-0746 VL - 599 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Valliappan, Senthamizh Pavai A1 - Arlt, Rainer A1 - Diercke, Andrea A1 - Denker, Carsten A1 - Vaquero, J. M. T1 - Sunspot group tilt angle measurements from historical observations JF - Advances in space research N2 - Sunspot positions from various historical sets of solar drawings are analyzed with respect to the tilt angles of bipolar sunspot groups. Data by Scheiner, Hevelius, Staudacher, Zucconi, Schwabe, and Sporer deliver a series of average tilt angles spanning a period of 270 years, additional to previously found values for 20th-century data obtained by other authors. We find that the average tilt angles before the Maunder minimum were not significantly different from the modem values. However, the average tilt angles of a period 50 years after the Maunder minimum, namely for cycles 0 and 1, were much lower and near zero. The normal tilt angles before the Maunder minimum suggest that it was not abnormally low tilt angles which drove the solar cycle into a grand minimum. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved. KW - Sun: sunspots KW - Tilt angles KW - Cycle-averaged tilt angle Y1 - 2016 U6 - https://doi.org/10.1016/j.asr.2016.03.002 SN - 0273-1177 SN - 1879-1948 VL - 58 SP - 1468 EP - 1474 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Arlt, Rainer A1 - Valliappan, Senthamizh Pavai A1 - Schmiel, C. A1 - Spada, F. T1 - Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner JF - Mountain research and development N2 - Methods. In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. KW - Sun: activity KW - sunspots KW - history and philosophy of astronomy Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201629000 SN - 1432-0746 VL - 595 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Diercke, Andrea A1 - Arlt, Rainer A1 - Denker, Carsten T1 - Digitization of sunspot drawings by Sporer made in 1861-1894 JF - Astronomische Nachrichten = Astronomical notes N2 - Most of our knowledge about the Sun's activity cycle arises from sunspot observations over the last centuries since telescopes have been used for astronomy. The German astronomer Gustav Sporer observed almost daily the Sun from 1861 until the beginning of 1894 and assembled a 33-year collection of sunspot data covering a total of 445 solar rotation periods. These sunspot drawings were carefully placed on an equidistant grid of heliographic longitude and latitude for each rotation period, which were then copied to copper plates for a lithographic reproduction of the drawings in astronomical journals. In this article, we describe in detail the process of capturing these data as digital images, correcting for various effects of the aging print materials, and preparing the data for contemporary scientific analysis based on advanced image processing techniques. With the processed data we create a butterfly diagram aggregating sunspot areas, and we present methods to measure the size of sunspots (umbra and penumbra) and to determine tilt angles of active regions. A probability density function of the sunspot area is computed, which conforms to contemporary data after rescaling. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim KW - astronomical databases: miscellaneous KW - history and philosophy of astronomy KW - Sun: activity KW - Sun: photosphere KW - Sun: sunspots KW - techniques: image processing Y1 - 2015 U6 - https://doi.org/10.1002/asna.201412138 SN - 0004-6337 SN - 1521-3994 VL - 336 IS - 1 SP - 53 EP - 62 PB - Wiley-VCH CY - Weinheim ER -