TY - JOUR A1 - Zuur, Abraham T. A1 - Lundbye-Jensen, Jesper A1 - Leukel, Christan A1 - Taube, Wolfgang A1 - Grey, Michael J. A1 - Gollhofer, Albert A1 - Nielsen, Jens Bo A1 - Gruber, Markus T1 - Contribution of afferent feedback and descending drive to human hopping N2 - During hopping an early burst can be observed in the EMG from the soleus muscle starting about 45 ms after touch-down. It may be speculated that this early EMG burst is a stretch reflex response superimposed on activity from a supra-spinal origin. We hypothesised that if a stretch reflex indeed contributes to the early EMG burst, then advancing or delaying the touch-down without the subject's knowledge should similarly advance or delay the burst. This was indeed the case when touch-down was advanced or delayed by shifting the height of a programmable platform up or down between two hops and this resulted in a correspondent shift of the early EMG burst. Our second hypothesis was that the motor cortex contributes to the first EMG burst during hopping. If so, inhibition of the motor cortex would reduce the magnitude of the burst. By applying a low-intensity magnetic stimulus it was possible to inhibit the motor cortex and this resulted in a suppression of the early EMG burst. These results suggest that sensory feedback and descending drive from the motor cortex are integrated to drive the motor neuron pool during the early EMG burst in hopping. Thus, simple reflexes work in concert with higher order structures to produce this repetitive movement. Y1 - 2010 UR - http://jp.physoc.org/ U6 - https://doi.org/10.1113/jphysiol.2009.182709 SN - 0022-3751 ER - TY - JOUR A1 - Wiesmeier, Isabella K. A1 - Dalin, Daniela A1 - Wehrle, Anja A1 - Granacher, Urs A1 - Muehlbauer, Thomas A1 - Dietterle, Jörg A1 - Weiller, Cornelius A1 - Gollhofer, Albert A1 - Maurer, Christoph T1 - Balance training enhances vestibular function and reduces overactive proprioceptive feedback in elderly JF - Frontiers in aging neuroscience N2 - Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training programon these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. KW - age KW - balance KW - vestibular KW - proprioception KW - training Y1 - 2017 U6 - https://doi.org/10.3389/fnagi.2017.00273 SN - 1663-4365 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Association of balance, strength, and power measures in young adults JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Muehlbauer, T, Gollhofer, A, and Granacher, U. Association of balance, strength, and power measures in young adults. J Strength Cond Res 27(3): 582-589, 2013-The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 6 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to + 0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to + 0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p, 0.05). Furthermore, simple regression analyses revealed that a 10% increase in mean CMJ height (4.1 cm) was associated with 22.9 N.m and 128.4 N.m.s(-1) better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily. KW - static/dynamic postural control KW - maximal isometric torque KW - rate of torque development KW - jump height/power Y1 - 2013 U6 - https://doi.org/10.1097/JSC.0b013e31825c2bab SN - 1064-8011 VL - 27 IS - 3 SP - 582 EP - 589 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Sex-related effects in strength training during adolescence a pilot study JF - Perceptual & motor skills N2 - The objective was to investigate the effects of high-velocity strength training on isometric strength of the leg extensors and jump height in female and male adolescents. Twenty-eight students (13 boys, 15 girls) ages 16 to 17 years participated in this study and were assigned to either a strength training group or a control group. Strength training was conducted over 8 weeks (2 times per week). Pre- and post-training tests included the measurements of maximal isometric force and rate of force development of the leg extensors as well as countermovement jump height. Both girls (effect size = 1.37) and boys (effect size = 0.61) showed significant improvements in jump height. However, significant increases in maximal isometric force (effect size = 1.85) and rate of force development (effect size = 2.23) were found only in girls. In female and male adolescents, high-velocity strength training is an effective training regimen that produced improvements in countermovement jump height in both sexes but higher gains in maximal isometric force and rate of force development in girls. Y1 - 2012 U6 - https://doi.org/10.2466/06.10.30.PMS.115.6.953-968 SN - 0031-5125 VL - 115 IS - 3 SP - 953 EP - 968 PB - Sage Publ. CY - Missoula ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Besemer, Carmen A1 - Wehrle, Anja A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Relationship between strength; balance and mobility in children aged 7-10 years JF - Gait & posture N2 - The purpose of this study was to investigate the association between variables of lower extremity muscle strength, balance, and mobility assessed under various task conditions. Twenty-one healthy children (mean age: 9 +/- 1 years) were tested for their isometric and dynamic strength as well as for their steady-state, proactive, and reactive balance and mobility. Balance and mobility tests were conducted under single and dual task conditions. Significant positive correlations were detected between measures of isometric and dynamic leg muscle strength. Hardly any significant associations were observed between variables of strength and balance/mobility and between measures of steady-state, proactive, and reactive balance. Additionally, no significant correlations were detected between balance/mobility tests performed under single and dual task conditions. The predominately non-significant correlations between different balance components and mobility imply that balance and mobility performance is task specific. Further, strength and balance/mobility as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. KW - Steady-state balance KW - Proactive/reactive balance KW - Maximal isometric force KW - Jumping height KW - Single/dual tasking KW - Cognitive/motor interference Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2012.06.022 SN - 0966-6362 VL - 37 IS - 1 SP - 108 EP - 112 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Besemer, Carmen A1 - Wehrle, Anja A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Relationship between strength, power and balance performance in seniors JF - Gerontology N2 - Background: Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. Objective: The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Methods: Twenty-four healthy and physically active older adults (mean age: 70 8 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Results: Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). Conclusion: The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. KW - Steady-state balance KW - Proactive/reactive balance KW - Force production KW - Single/dual tasking KW - Cognitive/motor interference Y1 - 2012 U6 - https://doi.org/10.1159/000341614 SN - 0304-324X VL - 58 IS - 6 SP - 504 EP - 512 PB - Karger CY - Basel ER - TY - JOUR A1 - Leukel, Christian A1 - Lundbye-Jensen, Jesper A1 - Gruber, Markus A1 - Zuur, Abraham T. A1 - Gollhofer, Albert A1 - Taube, Wolfgang T1 - Short-term pressure induced suppression of the short-latency response : a new methodology for investigating stretch reflexes N2 - During experiments involving ischemic nerve block, we noticed that the short-latency response (SLR) of evoked stretches in m. soleus decreased immediately following inflation of a pneumatic cuff surrounding the lower leg. The present study aimed to investigate this short-term effect of pressure application in more detail. Fifty-eight healthy subjects were divided into seven protocols. Unilateral stretches were applied to the calf muscles to elicit a SLR, and bilateral stretches to evoke a subsequent medium-latency response (MLR). Furthermore, H-reflexes and sensory nerve action potentials (SNAPs) were recorded. Additionally, stretches were applied with different velocities and amplitudes. Finally, the SLR was investigated during hopping and in two protocols that modified the ability of the muscle-tendon complex distal to the cuff to stretch. All measurements were performed with deflated and inflated cuff. Results of the protocols were as follows: 1) inflation of the cuff reduced the SLR but not the MLR; 2) the H-reflex, the M-wave, and, 3) SNAPs of n. tibialis remained unchanged with deflated and inflated cuff; 4) the SLR was dependent on the stretch velocity with deflated and also inflated cuff; 5 and 6) the reduction of the SLR by the cuff was dependent on the elastic properties of the muscle-tendon complex distal to the cuff; and 7) the cuff reduced the SLR during hopping. The present results suggest that the cuff did not affect the reflex arc per se. It is proposed that inflation restricted stretch of the muscles underlying the cuff so that most of the length change occurred in the muscle-tendon complex distal to the cuff. As a consequence, the muscle spindles lying within the muscle may be less excited, resulting in a reduced SLR. Due to its applicability in functional tasks, the introduced method can be a useful tool to study afferent feedback in motor control. Y1 - 2009 UR - http://jap.physiology.org/ U6 - https://doi.org/10.1152/japplphysiol.00301.2009 SN - 8750-7587 ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Roettger, Katrin A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas T1 - Relationships between trunk muscle strength, spinal mobility, and balance performance in older adults JF - Journal of aging and physical activity N2 - This study investigated associations between variables of trunk muscle strength (TMS), spinal mobility, and balance in seniors. Thirty-four seniors (sex: 18 female, 16 male; age: 70 +/- 4 years; activity level: 13 +/- 7 hr/week) were tested for maximal isometric strength (MIS) of the trunk extensors, flexors, lateral flexors, rotators, spinal mobility, and steady-state, reactive, and proactive balance. Significant correlations were detected between all measures of TMS and static steady-state balance (r = .43.57, p < .05). Significant correlations were observed between specific measures of TMS and dynamic steady-state balance (r = .42.55, p < .05). No significant correlations were found between all variables of TMS and reactive/proactive balance and between all variables of spinal mobility and balance. Regression analyses revealed that TMS explains between 1-33% of total variance of the respective balance parameters. Findings indicate that TMS is related to measures of steady-state balance which may imply that TMS promoting exercises should be integrated in strength training for seniors. KW - elderly KW - core KW - gait KW - postural balance KW - force KW - physical performance Y1 - 2014 U6 - https://doi.org/10.1123/JAPA.2013-0108 SN - 1063-8652 SN - 1543-267X VL - 22 IS - 4 SP - 490 EP - 498 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Röttger, Katrin A1 - Gollhofer, Albert T1 - Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults JF - Gerontology N2 - Background: Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. Objective: The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Methods: Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 +/- 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 +/- 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Results: Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group x test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. Conclusion: CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. KW - Elderly KW - Gait KW - Muscle strength KW - Physical performance KW - Postural balance Y1 - 2013 U6 - https://doi.org/10.1159/000343152 SN - 0304-324X VL - 59 IS - 2 SP - 105 EP - 113 PB - Karger CY - Basel ER - TY - JOUR A1 - Granacher, Urs A1 - Gruber, Markus A1 - Gollhofer, Albert T1 - Resistance training and neuromuscular performance in seniors N2 - Age-related processes in the neuromuscular and the somatosensory system are responsible for decreases in maximal and explosive force production capacity and deficits in postural control. Thus, the objectives of this study were to investigate the effects of resistance training on strength performance and on postural control in seniors. Forty healthy seniors (67 +/- 1 yrs) participated in this study. Subjects were randomly assigned to a resistance training (n = 20) and a control group (n = 20). Resistance training for the lower extremities lasted for 13 weeks at 80% of the one repetition maximum. Pre and post tests included the measurement of maximal isometric leg extension force with special emphasis on the early part of the force-time-curve and the assessment of static (functional reach test) and dynamic (tandem walk test, platform perturbation) postural control. Resistance training resulted I in an enhanced strength performance with increases I in explosive force exceeding those in maximal strength. Improved performances in the functional reach and in the tandem walk test were observed. Resistance training did not have an effect: on the compensation of platform perturbations. Increases in strength performance can primarily be explained by an improved neural drive of the agonist muscles. The inconsistent effect of resistance training on postural control may be explained by heterogeneity of testing methodology or by the incapability of isolated resisiance training to improve postural control. Y1 - 2009 UR - http://www.thieme-connect.de/ejournals/toc/sportsmed U6 - https://doi.org/10.1055/s-0029-1224178 SN - 0172-4622 ER - TY - JOUR A1 - Granacher, Urs A1 - Gruber, Markus A1 - Foerderer, Dominik A1 - Strass, Dieter A1 - Gollhofer, Albert T1 - Effects of ankle fatigue on functional reflex activity during gait perturbations in young and elderly men N2 - There is growing evidence that aging and muscle fatigue result in impaired postural reflexes in humans. Therefore, the objective of this study was to examine the effects of ankle fatigue on functional reflex activity (ERA) during gait perturbations in young and elderly men. Twenty-eight young (27.0 +/- 3.1 years, n = 14) and old (67.2 +/- 3.7 years, n = 14) healthy active men participated in this study. Fatigue of the plantarflexors and dorsiflexors was induced by isokinetic contractions. Pre and post-fatigue, subjects were tested for their ability to compensate for decelerating gait perturbations while walking on a treadmill. Latency, ERA of lower extremity muscles and angular velocity of the ankle joint complex were analysed by means of surface electromyography and goniometry. After the fatigue protocol, no significant main and interaction effects were detected for the parameter latency in m. tibialis anterior (TA). For both groups, a significant pre to post-test decrease in ERA in TA (P<.001) was observed coming along with increases in antagonist coactivity (P=.013) and maximal angular velocity of the ankle joint (p=.007). However, no significant group x test interactions were found for the three parameters. Ankle fatigue has an impact on the ability to compensate for gait perturbations in young and elderly adults. However, no significant differences in all analysed parameters were detected between young and elderly subjects. These results may imply that age-related deteriorations in the postural control system do not specifically affect the ability to compensate for gait perturbations under fatigued condition. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/09666362 U6 - https://doi.org/10.1016/j.gaitpost.2010.03.016 SN - 0966-6362 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Cardinale, Marco T1 - Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults JF - PLoS one N2 - The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - JOUR A1 - Beurskens, Rainer A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas A1 - Cardinale, Marco A1 - Granacher, Urs T1 - Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults JF - PLoS one N2 - The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 VL - 10 IS - 2 PB - PLoS CY - San Fransisco ER -