TY - JOUR A1 - Soares Pereira, Francisco Jairo A1 - Gomes Costa, Carlos Alexandre A1 - Förster, Saskia A1 - Brosinsky, Arlena A1 - de Araujo, Jose Carlos T1 - Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery JF - International journal of applied earth observation and geoinformation N2 - There is a shortage of sediment-routing monitoring worldwide, despite its relevance to environmental processes. In drylands, where water resources are more vulnerable to the sediment dynamics, this flaw is even more harmful. In the semi-arid Caatinga biome in the North-east of Brazil, rivers are almost all intermittent and hydro-sedimentological monitoring is scarce. In the biome, water supply derives from thousands of surface reservoirs, whose water availability is liable to be reduced by siltation and sediment-related pollution. The goal of this research was to evaluate the potential of multi-temporal high-resolution satellite imagery (RapidEye) to assess the suspended sediment concentration (SSC) in the medium-sized intermittent Jaguaribe River, Brazil, during a 5-year period. We validated 15 one-, two- and three-band indices for SSC estimation based on RapidEye spectral bands deduced in the context of the present investigation and nine indices proposed in the literature for other optical sensors, by comparing them with in-situ concentration data. The in-situ SSC data ranged from 67 mg.L-1 to 230 mg.L-1. We concluded that RapidEye images can assess moderate SSC of intermittent rivers, even when their discharge is low. The RapidEye indices performed better than those from literature. The spectral band that best represented SSC was the near infrared, whose performance improved when associated with the green band. This conclusion agrees with literature findings for diverse sedimentological contexts. The three-band spectral indices performed worse than those with only one or two spectral bands, showing that the use of a third band did not enhance the model ability. Besides, we show that the hydrological characteristics of semi-arid intermittent rivers generate difficulties to monitor SSC using optical satellite remote sensing, such as time-concentrated sediment yield; and its association with recent rainfall events and, therefore, with cloudy sky. KW - Remote sensing KW - Sediment load KW - Dryland KW - Brazil Y1 - 2019 U6 - https://doi.org/10.1016/j.jag.2019.02.009 SN - 0303-2434 VL - 79 SP - 153 EP - 161 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Förster, Saskia A1 - Wilczok, Charlotte A1 - Brosinsky, Arlena A1 - Segl, Karl T1 - Assessment of sediment connectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Many Mediterranean drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity describes the ease with which sediment can move through a catchment. The spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main factors driving sediment connectivity. This is particularly true for the patchy vegetation cover typical of many dryland environments. Several connectivity measures have been developed in the last few years. At the same time, advances in remote sensing have enabled an improved catchment-wide estimation of ground cover at the subpixel level using hyperspectral imagery. The objective of this study was to assess the sediment connectivity for two adjacent subcatchments (similar to 70 km(2)) of the Isabena River in the Spanish Pyrenees in contrasting seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. The fractional cover of green vegetation, non-photosynthetic vegetation, bare soil and rock were derived by applying a multiple endmember spectral mixture analysis approach to the hyperspectral image data. Sediment connectivity was mapped using the index of connectivity, in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighting factor. In this study, the cover and management factor (C factor) of the Revised Universal Soil Loss Equation (RUSLE) was used as a weighting factor. Bi-temporal C factor maps were derived by linking the spatially explicit fractional ground cover and vegetation height obtained from the airborne data to the variables of the RUSLE subfactors. The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover and on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in August as compared to April. The two subcatchments show a slightly different connectivity behaviour that reflects the different land cover proportions and their spatial configuration. The connectivity estimation can support a better understanding of processes controlling the redistribution of water and sediments from the hillslopes to the channel network at a scale appropriate for land management. It allows hot spot areas of erosion to be identified and the effects of erosion control measures, as well as different land management scenarios, to be studied. KW - Fractional cover KW - Imaging spectroscopy KW - Index of connectivity KW - North-eastern Spain KW - Sediment connectivity KW - Spectral unmixing Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0992-3 SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 1982 EP - 2000 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Francke, Till A1 - Förster, Saskia A1 - Brosinsky, Arlena A1 - Sommerer, Erik A1 - Lopez-Tarazonl, Jose Andres A1 - Güntner, Andreas A1 - Batalla, Ramon J. A1 - Bronstert, Axel T1 - Water and sediment fluxes in Mediterranean mountainous regions BT - comprehensive dataset for hydro-sedimentological analyses and modelling in a mesoscale catchment (River Isabena, NE Spain) JF - Earth System Science Data N2 - A comprehensive hydro-sedimentological dataset for the Isabena catchment, northeastern (NE) Spain, for the period 2010-2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Isabena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isabena catchment (445 km(2)) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Isabena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments. Y1 - 2018 U6 - https://doi.org/10.5194/essd-10-1063-2018 SN - 1866-3508 SN - 1866-3516 VL - 10 IS - 2 SP - 1063 EP - 1075 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Francke, Till A1 - Baroni, Gabriele A1 - Brosinsky, Arlena A1 - Foerster, Saskia A1 - Lopez-Tarazon, José Andrés A1 - Sommerer, Erik A1 - Bronstert, Axel T1 - What Did Really Improve Our Mesoscale Hydrological Model? BT - a Multidimensional Analysis Based on Real Observations JF - Water resources research N2 - Modelers can improve a model by addressing the causes for the model errors (data errors and structural errors). This leads to implementing model enhancements (MEs), for example, meteorological data based on more monitoring stations, improved calibration data, and/or modifications in process formulations. However, deciding on which MEs to implement remains a matter of expert knowledge. After implementing multiple MEs, any improvement in model performance is not easily attributed, especially when considering different objectives or aspects of this improvement (e.g., better dynamics vs. reduced bias). We present an approach for comparing the effect of multiple MEs based on real observations and considering multiple objectives (MMEMO). A stepwise selection approach and structured plots help to address the multidimensionality of the problem. Tailored analyses allow a differentiated view on the effect of MEs and their interactions. MMEMO is applied to a case study employing the mesoscale hydro-sedimentological model WASA-SED for the Mediterranean-mountainous Isabena catchment, northeast Spain. The investigated seven MEs show diverse effects: some MEs (e.g., rainfall data) cause improvements for most objectives, while other MEs (e.g., land use data) only affect a few objectives or even decrease model performance. Interaction of MEs was observed for roughly half of the MEs, confirming the need to address them in the analysis. Calibration and increasing the temporal resolution showed by far stronger impact than any of the other MEs. The proposed framework can be adopted in other studies to analyze the effect of MEs and, thus, facilitate the identification and implementation of the most promising MEs for comparable cases. KW - modeling KW - sensitivity analyses KW - model enhancement KW - sediment Y1 - 2018 U6 - https://doi.org/10.1029/2018WR022813 SN - 0043-1397 SN - 1944-7973 VL - 54 IS - 11 SP - 8594 EP - 8612 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Coelho, Christine A1 - Heim, Birgit A1 - Förster, Saskia A1 - Brosinsky, Arlena A1 - de Araujo, Jose Carlos T1 - In Situ and Satellite Observation of CDOM and Chlorophyll-a Dynamics in Small Water Surface Reservoirs in the Brazilian Semiarid Region JF - Water N2 - We analyzed chlorophyll-a and Colored Dissolved Organic Matter (CDOM) dynamics from field measurements and assessed the potential of multispectral satellite data for retrieving water-quality parameters in three small surface reservoirs in the Brazilian semiarid region. More specifically, this work is comprised of: (i) analysis of Chl-a and trophic dynamics; (ii) characterization of CDOM; (iii) estimation of Chl-a and CDOM from OLI/Landsat-8 and RapidEye imagery. The monitoring lasted 20 months within a multi-year drought, which contributed to water-quality deterioration. Chl-a and trophic state analysis showed a highly eutrophic status for the perennial reservoir during the entire study period, while the non-perennial reservoirs ranged from oligotrophic to eutrophic, with changes associated with the first events of the rainy season. CDOM characterization suggests that the perennial reservoir is mostly influenced by autochthonous sources, while allochthonous sources dominate the non-perennial ones. Spectral-group classification assigned the perennial reservoir as a CDOM-moderate and highly eutrophic reservoir, whereas the non-perennial ones were assigned as CDOM-rich and oligotrophic-dystrophic reservoirs. The remote sensing initiative was partially successful: the Chl-a was best modelled using RapidEye for the perennial one; whereas CDOM performed best with Landsat-8 for non-perennial reservoirs. This investigation showed potential for retrieving water quality parameters in dry areas with small reservoirs. KW - water quality KW - eutrophication KW - tropic state index KW - Landsat-8 KW - RapidEye KW - tropical inland water bodies KW - Brazil Y1 - 2017 U6 - https://doi.org/10.3390/w9120913 SN - 2073-4441 VL - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Carvalho, Thayslan A1 - Brosinsky, Arlena A1 - Foerster, Saskia A1 - Teixeira, Adunias A1 - Medeiros, Pedro Henrique Augusto T1 - Reservoir sediment characterisation by diffuse reflectance spectroscopy in a semiarid region to support sediment reuse for soil fertilization JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Purpose: Soil erosion by water yields sediment to surface reservoirs, reducing their storage capacities, changing their geometry, and degrading water quality. Sediment reuse, i.e., fertilization of agricultural soils with the nutrient-enriched sediment from reservoirs, has been proposed as a recovery strategy. However, the sediment needs to meet certain criteria. In this study, we characterize sediments from the densely dammed semiarid Northeast Brazil by VNIR-SWIR spectroscopy and assess the effect of spectral resolution and spatial scale on the accuracy of N, P, K, C, electrical conductivity, and clay prediction models. Methods Sediment was collected in 10 empty reservoirs, and physical and chemical laboratory analyses as well as spectral measurements were performed. The spectra, initially measured at 1 nm spectral resolution, were resampled to 5 and 10 nm, and samples were analysed for both high and low spectral resolution at three spatial scales, namely (1) reservoir, (2) catchment, and (3) regional scale. Results Partial least square regressions performed from good to very good in the prediction of clay and electrical conductivity from reservoir (<40 km(2)) to regional (82,500 km(2)) scales. Models for C and N performed satisfactorily at the reservoir scale, but degraded to unsatisfactory at the other scales. Models for P and K were more unstable and performed from unsatisfactorily to satisfactorily at all scales. Coarsening spectral resolution by up to 10 nm only slightly degrades the models' performance, indicating the potential of characterizing sediment from spectral data captured at lower resolutions, such as by hyperspectral satellite sensors. Conclusion: By reducing the costly and time-consuming laboratory analyses, the method helps to promote the sediment reuse as a practice of soil and water conservation. KW - Sediment characterization KW - Spectroscopy KW - Sediment reuse KW - Surface KW - reservoirs KW - Semiarid KW - Brazil Y1 - 2022 U6 - https://doi.org/10.1007/s11368-022-03281-1 SN - 1439-0108 SN - 1614-7480 VL - 22 SP - 2557 EP - 2577 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Brosinsky, Arlena A1 - Förster, Saskia A1 - Segl, Karl A1 - Lopez-Tarazon, José Andrés A1 - Pique, Gemma A1 - Bronstert, Axel T1 - Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as "fingerprints" to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (> 60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events. Sediment samples from the following three different origins were collected in the Isabena catchment (445 km(2)) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions. We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location-and thus the effect of individual tributaries or subcatchments-seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (< 10 %), and other sources (not further determinable) contributed up to 40 %. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed. Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types. KW - Isabena river KW - Mixing models KW - Northeast Spain KW - Sediment fingerprinting KW - Spectroscopy KW - Suspended sediment Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0927-z SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 1965 EP - 1981 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Brosinsky, Arlena A1 - Förster, Saskia A1 - Segl, Karl A1 - Kaufmann, Hermann T1 - Spectral fingerprinting: sediment source discrimination and contribution modelling of artificial mixtures based on VNIR-SWIR spectral properties JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Knowledge of the origin of suspended sediment is important for improving our understanding of sediment dynamics and thereupon support of sustainable watershed management. An direct approach to trace the origin of sediments is the fingerprinting technique. It is based on the assumption that potential sediment sources can be discriminated and that the contribution of these sources to the sediment can be determined on the basis of distinctive characteristics (fingerprints). Recent studies indicate that visible-near-infrared (VNIR) and shortwave-infrared (SWIR) reflectance characteristics of soil may be a rapid, inexpensive alternative to traditional fingerprint properties (e.g. geochemistry or mineral magnetism). To further explore the applicability of VNIR-SWIR spectral data for sediment tracing purposes, source samples were collected in the Isabena watershed, a 445 km(2) dryland catchment in the central Spanish Pyrenees. Grab samples of the upper soil layer were collected from the main potential sediment source types along with in situ reflectance spectra. Samples were dried and sieved, and artificial mixtures of known proportions were produced for algorithm validation. Then, spectral readings of potential source and artificial mixture samples were taken in the laboratory. Colour coefficients and physically based parameters were calculated from in situ and laboratory-measured spectra. All parameters passing a number of prerequisite tests were subsequently applied in discriminant function analysis for source discrimination and mixing model analyses for source contribution assessment. The three source types (i.e. badlands, forest/grassland and an aggregation of other sources, including agricultural land, shrubland, unpaved roads and open slopes) could be reliably identified based on spectral parameters. Laboratory-measured spectral fingerprints permitted the quantification of source contribution to artificial mixtures, and introduction of source heterogeneity into the mixing model decreased accuracies for some source types. Aggregation of source types that could not be discriminated did not improve mixing model results. Despite providing similar discrimination accuracies as laboratory source parameters, in situ derived source information was found to be insufficient for contribution modelling. The laboratory mixture experiment provides valuable insights into the capabilities and limitations of spectral fingerprint properties. From this study, we conclude that combinations of spectral properties can be used for mixing model analyses of a restricted number of source groups, whereas more straightforward in situ measured source parameters do not seem suitable. However, modelling results based on laboratory parameters also need to be interpreted with care and should not rely on the estimates of mean values only but should consider uncertainty intervals as well. KW - Artificial mixture KW - Mixing model KW - Sediment fingerprinting KW - Spectroscopy Y1 - 2014 U6 - https://doi.org/10.1007/s11368-014-0925-1 SN - 1439-0108 SN - 1614-7480 VL - 14 IS - 12 SP - 1949 EP - 1964 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Braga, Brennda A1 - Anchieta de Carvalho, Thayslan Renato A1 - Brosinsky, Arlena A1 - Förster, Saskia A1 - Medeiros, Pedro Henrique Augusto T1 - From waste to resource BT - Cost-benefit analysis of reservoir sediment reuse for soil fertilization in a semiarid catchment JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Reservoir networks have been established worldwide to ensure water supply, but water availability is endangered quantitatively and qualitatively by sedimentation. Reuse of sediment silted in reservoirs as fertilizer has been proposed, thus transforming nutrient-enriched sediments from waste into resource. The aim of this study is to assess the potential of reusing sediment as a nutrient source for agriculture a semiarid basin in Brazil. where 1029 reservoirs were identified. Sedimentation was modelled for the entire reservoir network, accounting for 7 x 10(5) tons of y(-1)sediment deposition. Nutrients contents in reservoir sediments was analysed and com- pared to nutrients contents of agricultural soils in the catchment. The potential of reusing sediment as fertilizer was assessed for maize crops (Zea mays L) and the sediment mass required to fertilize the soil was computed considering that the crop nitrogen requirement would be fully provided by the sediment. Economic feasibility was analysed by comparing the costs of the proposed practice to those obtained if the area was fertilized by traditional means. Results showed that, where reservoirs fall dry frequently and sediments can be removed by excavation, soil fertilization with sediment presents lower costs than those observed for application of commercial chemical fertilizers. Compared to conventional fertilization, when using sediments with high nutrient content, 25% of costs could be saved, while when using sediments with low nutrient content costs are 9% higher. According to the local conditions, sediments with nitrogen content above 1.5 g kg(-1) are cost efficient as nitrogen source. However, physical and chemical analyses are recommended to define the sediment mass to be used and to identify any constraint to the application of the practice, like the high sodium adsorption ratio observed in one of the studied reservoirs, which can contribute to soil salinization. (C) 2019 Elsevier B.V. All rights reserved. KW - Reservoir sedimentation KW - Sediment reuse KW - Fertilizer KW - Agriculture KW - Semiarid KW - Cost-benefit analysis Y1 - 2019 U6 - https://doi.org/10.1016/j.scitotenv.2019.03.083 SN - 0048-9697 SN - 1879-1026 VL - 670 SP - 158 EP - 169 PB - Elsevier CY - Amsterdam ER -