TY - JOUR A1 - Reusser, Dominik Edwin A1 - Buytaert, W. A1 - Zehe, Erwin T1 - Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test JF - Water resources research N2 - The quest for improved hydrological models is one of the big challenges in hydrology. When discrepancies are observed between simulated and measured discharge, it is essential to identify which algorithms may be responsible for poor model behavior. Particularly in complex hydrological models, different process representations may dominate at different moments and interact with each other, thus highly complicating this task. This paper investigates the analysis of the temporal dynamics of parameter sensitivity as a way to disentangle the simulation of a hydrological model and identify dominant parameterizations. Three existing methods (the Fourier amplitude sensitivity test, the extended Fourier amplitude sensitivity test, and Sobol's method) are compared by applying them to a TOPMODEL implementation in a small mountainous catchment in the tropics. For the major part of the simulation period, the three methods give comparable results, while the Fourier amplitude sensitivity test is much more computationally efficient. This method is also applied to the complex hydrological model WaSiM-ETH implemented in the Weisseritz catchment, Germany. A qualitative model validation was performed on the basis of the identification of relevant model components. The validation revealed that the saturation deficit parameterization of WaSiM-ETH is highly susceptible to parameter interaction and lack of identifiability. We conclude that temporal dynamics of model parameter sensitivity can be a powerful tool for hydrological model analysis, especially to identify parameter interaction as well as the dominant hydrological response modes. Finally, an open source implementation of the Fourier amplitude sensitivity test is provided. Y1 - 2011 U6 - https://doi.org/10.1029/2010WR009947 SN - 0043-1397 VL - 47 IS - 4 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Reusser, Dominik Edwin A1 - Zehe, Erwin T1 - Low-cost monitoring of snow height and thermal properties with inexpensive temperature sensors JF - Hydrological processes N2 - Small, self-recording temperature sensors were installed at several heights along a metal rod at five locations in a case study catchment. For each sensor, the presence or absence of snow cover was determined on the basis of its insulating effect and the resulting reduction of the diurnal temperature oscillations. Sensor coverage was then converted into a time series of snow height for each location. Additionally, cold content was calculated. Snow height and cold content provide valuable information for spring flood prediction. Good agreement of estimated snow heights with reference measurements was achieved and increased discharge in the study catchment coincided with low cold content of the snow cover. The results of the proposed distributed assessment of snow cover and snow state show great potential for (i) flood warning, (ii) assimilation of snow state data and (iii) modelling snowmelt process. KW - snow measurements KW - cold content KW - temperature index approach KW - heat diffusion KW - temperature Y1 - 2011 U6 - https://doi.org/10.1002/hyp.7937 SN - 0885-6087 SN - 1099-1085 VL - 25 IS - 12 SP - 1841 EP - 1852 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Reusser, Dominik Edwin A1 - Zehe, Erwin T1 - Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity JF - Water resources research N2 - In this paper we investigate the use of hydrological models as learning tools to help improve our understanding of the hydrological functioning of a catchment. With the model as a hypothetical conceptualization of how dominant hydrological processes contribute to catchment-scale response, we investigate three questions: (1) During which periods does the model (not) reproduce observed quantities and dynamics? (2) What is the nature of the error during times of bad model performance? (3) Which model components are responsible for this error? To investigate these questions, we combine a method for detecting repeating patterns of typical differences between model and observations (time series of grouped errors, TIGER) with a method for identifying the active model components during each simulation time step based on parameter sensitivity (temporal dynamics of parameter sensitivities, TEDPAS). The approach generates a time series of occurrence of dominant error types and time series of parameter sensitivities. A synoptic discussion of these time series highlights deficiencies in the assumptions about the functioning of the catchment. The approach is demonstrated for the Weisseritz headwater catchment in the eastern Ore Mountains. Our results indicate that the WaSiM-ETH complex grid-based model is not a sufficient working hypothesis for the functioning of the Weisseritz catchment and point toward future steps that can help improve our understanding of the catchment. Y1 - 2011 U6 - https://doi.org/10.1029/2010WR009946 SN - 0043-1397 SN - 1944-7973 VL - 47 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wienhöfer, Jan A1 - Lindenmaier, Falk A1 - Zehe, Erwin T1 - Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides JF - Vadose zone journal N2 - Slow-moving landslides are a wide-spread type of active mass movement, can cause severe damages to infrastructure, and may be a precursor of sudden catastrophic slope failures. Pore-water pressure is commonly regarded as the most important among a number of possible factors controlling landslide velocity. We used high-resolution monitoring data to explore the relations of landslide mobility and hydrologic processes at the Heumoser landslide in Austria, which is characterized by continuous slow movement along a shear zone. Movement rates showed a seasonality that was associated with elevated pore-water pressures. Pore pressure monitoring revealed a system of confined and separated aquifers with differing dynamics. Analysis of a simple infinite slope mobility model showed that small variations in parameters, along with measured pore pressure dynamics, provided a perfect match to our observations. Modeling showed a stabilizing effect of snow cover due to the additional load. This finding was supported by a multiple regression model, which further suggested that effective pore pressures at the slip surface were partially differing from the borehole observations and were related to preferential infiltration and subsurface flow in adjacent areas. It appears that in a setting like the Heumoser landslide, hydrologic processes delicately influence slope mobility through their control on pore pressure dynamics and the weight of the landslide body, which challenges observation and modeling. Moreover, it appears that their simplicity, and especially their high sensitivity to parameter variations, limits the conclusions that can be drawn from infinite slope models. Y1 - 2011 U6 - https://doi.org/10.2136/vzj2009.0182 SN - 1539-1663 VL - 10 IS - 2 SP - 496 EP - 511 PB - Soil Science Society of America CY - Madison ER -