TY - JOUR A1 - Mohsen, Amjad A1 - Asch, Günter A1 - Mechie, James A1 - Kind, Rainer A1 - Hofstetter, Rami A1 - Weber, Michael H. A1 - Stiller, M. A1 - Abu-Ayyash, Khalil T1 - Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis JF - Geophysical journal international N2 - The Dead Sea Transform (DST) is a major left-lateral strike-slip fault that accommodates the relative motion between the African and Arabian plates, connecting a region of extension in the Red Sea to the Taurus collision zone in Turkey over a length of about 1100 km. The Dead Sea Basin (DSB) is one of the largest basins along the DST. The DSB is a morphotectonic depression along the DST, divided into a northern and a southern sub-basin, separated by the Lisan salt diapir. We report on a receiver function study of the crust within the multidisciplinary geophysical project, DEad Sea Integrated REsearch (DESIRE), to study the crustal structure of the DSB. A temporary seismic network was operated on both sides of the DSB between 2006 October and 2008 April. The aperture of the network is approximately 60 km in the E-W direction crossing the DSB on the Lisan peninsula and about 100 km in the N-S direction. Analysis of receiver functions from the DESIRE temporary network indicates that Moho depths vary between 30 and 38 km beneath the area. These Moho depth estimates are consistent with results of near-vertical incidence and wide-angle controlled-source techniques. Receiver functions reveal an additional discontinuity in the lower crust, but only in the DSB and west of it. This leads to the conclusion that the internal crustal structure east and west of the DSB is different at the present-day. However, if the 107 km left-lateral movement along the DST is taken into account, then the region beneath the DESIRE array where no lower crustal discontinuity is observed would have lain about 18 Ma ago immediately adjacent to the region under the previous DESERT array west of the DST where no lower crustal discontinuity is recognized. KW - Transform faults KW - Crustal structure Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04853.x SN - 0956-540X VL - 184 IS - 1 SP - 463 EP - 476 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Stankiewicz, Jacek A1 - Munoz, G. A1 - Ritter, Oliver A1 - Bedrosian, Paul A. A1 - Ryberg, Trond A1 - Weckmann, Ute A1 - Weber, Michael H. T1 - Shallow lithological structure across the Dead Sea Transform derived from geophysical experiments JF - Geochemistry, geophysics, geosystems N2 - In the framework of the DEad SEa Rift Transect (DESERT) project a 150 km magnetotelluric profile consisting of 154 sites was carried out across the Dead Sea Transform. The resistivity model presented shows conductive structures in the western section of the study area terminating abruptly at the Arava Fault. For a more detailed analysis we performed a joint interpretation of the resistivity model with a P wave velocity model from a partially coincident seismic experiment. The technique used is a statistical correlation of resistivity and velocity values in parameter space. Regions of high probability of a coexisting pair of values for the two parameters are mapped back into the spatial domain, illustrating the geographical location of lithological classes. In this study, four regions of enhanced probability have been identified, and are remapped as four lithological classes. This technique confirms the Arava Fault marks the boundary of a highly conductive lithological class down to a depth of similar to 3 km. That the fault acts as an impermeable barrier to fluid flow is unusual for large fault zone, which often exhibit a fault zone characterized by high conductivity and low seismic velocity. At greater depths it is possible to resolve the Precambrian basement into two classes characterized by vastly different resistivity values but similar seismic velocities. The boundary between these classes is approximately coincident with the Al Quweira Fault, with higher resistivities observed east of the fault. This is interpreted as evidence for the original deformation along the DST originally taking place at the Al Quweira Fault, before being shifted to the Arava Fault. KW - magnetotellurics KW - seismic tomography Y1 - 2011 U6 - https://doi.org/10.1029/2011GC003678 SN - 1525-2027 VL - 12 IS - 3-4 PB - American Geophysical Union CY - Washington ER -