TY - JOUR A1 - Giese, Holger A1 - Henkler, Stefan A1 - Hirsch, Martin T1 - A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems JF - Simulation : transactions of the Society for Modeling and Simulation International N2 - Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engineering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper how our component-based approach for reconfigurable mechatronic systems, MECHATRONIC UML, efficiently handles the complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even more flexible reconfiguration cases is presented. KW - code generation KW - hybrid systems KW - reconfigurable systems KW - simulation Y1 - 2011 U6 - https://doi.org/10.1177/0037549710366824 SN - 0037-5497 VL - 87 IS - 9 SP - 775 EP - 808 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Henkler, Stefan A1 - Oberthuer, Simon A1 - Giese, Holger A1 - Seibel, Andreas T1 - Model-driven runtime resource predictions for advanced mechatronic systems with dynamic data structures JF - Computer systems science and engineering N2 - The next generation of advanced mechatronic systems is expected to enhance their functionality and improve their performance by context-dependent behavior. Therefore, these systems require to represent information about their complex environment and changing sets of collaboration partners internally. This requirement is in contrast to the usually assumed static structures of embedded systems. In this paper, we present a model-driven approach which overcomes this situation by supporting dynamic data structures while still guaranteeing that valid worst-case execution times can be derived. It supports a flexible resource manager which avoids to operate with the prohibitive coarse worst-case boundaries but instead supports to run applications in different profiles which guarantee different resource requirements and put unused resources in a profile at other applications' disposal. By supporting the proper estimation of worst case execution time (WCET) and worst case number of iteration (WCNI) at runtime, we can further support to create new profiles, add or remove them at runtime in order to minimize the over-approximation of the resource consumption resulting from the dynamic data structures required for the outlined class of advanced systems. KW - Model-Driven Engineering KW - Safety Critical Systems KW - Dynamic Data Structures KW - Flexible Resource Manager KW - Runtime WCET Analysis Y1 - 2011 SN - 0267-6192 VL - 26 IS - 6 SP - 505 EP - 518 PB - IOP Publ. Ltd. CY - Leicester ER -