TY - JOUR A1 - Yarman, Aysu A1 - Gröbe, Glenn A1 - Neumann, Bettina A1 - Kinne, Mathias A1 - Gajovic-Eichelmann, Nenad A1 - Wollenberger, Ursula A1 - Hofrichter, Martin A1 - Ullrich, Rene A1 - Scheibner, Katrin A1 - Scheller, Frieder W. T1 - The aromatic peroxygenase from Marasmius rutola-a new enzyme for biosensor applications JF - Analytical & bioanalytical chemistry N2 - The aromatic peroxygenase (APO; EC 1.11.2.1) from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of -278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe(2+)/Fe(3+) redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed. KW - Unspecific peroxygenase KW - Cytochrome P450 KW - Biosensors KW - Phenolic substances Y1 - 2012 U6 - https://doi.org/10.1007/s00216-011-5497-y SN - 1618-2642 VL - 402 IS - 1 SP - 405 EP - 412 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Neumann, Bettina A1 - Yarman, Aysu A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Characterization of the enhanced peroxidatic activity of amyloid beta peptide-hemin complexes towards neurotransmitters JF - Analytical & bioanalytical chemistry N2 - Binding of heme to the amyloid peptides A beta 40/42 is thought to be an initial step in the development of symptoms in the early stages of Alzheimer's disease by enhancing the intrinsic peroxidatic activity of heme. We found considerably higher acceleration of the reaction for the physiologically relevant neurotransmitters dopamine and serotonin than reported earlier for the artificial substrate 3,3',5,5'-tetramethylbenzidine (TMB). Thus, the binding of hemin to A beta peptides might play an even more crucial role in the early stages of Alzheimer's disease than deduced from these earlier results. To mimic complex formation, a new surface architecture has been developed: The interaction between the truncated amyloid peptide A beta 1-16 and hemin immobilized on an aminohexanethiol spacer on a gold electrode has been analyzed by cyclic voltammetry. The resulting complex has a redox pair with a 25 mV more cathodic formal potential than hemin alone. KW - Peroxidatic activity Y1 - 2014 U6 - https://doi.org/10.1007/s00216-014-7822-8 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 14 SP - 3359 EP - 3364 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Neumann, Bettina A1 - Wollenberger, Ulla T1 - Electrochemical biosensors employing natural and artificial heme peroxidases on semiconductors JF - Sensors N2 - Heme peroxidases are widely used as biological recognition elements in electrochemical biosensors for hydrogen peroxide and phenolic compounds. Various nature-derived and fully synthetic heme peroxidase mimics have been designed and their potential for replacing the natural enzymes in biosensors has been investigated. The use of semiconducting materials as transducers can thereby offer new opportunities with respect to catalyst immobilization, reaction stimulation, or read-out. This review focuses on approaches for the construction of electrochemical biosensors employing natural heme peroxidases as well as various mimics immobilized on semiconducting electrode surfaces. It will outline important advances made so far as well as the novel applications resulting thereof. KW - electrochemical biosensors KW - heme KW - peroxidases KW - semiconductors KW - peroxidase mimics Y1 - 2020 U6 - https://doi.org/10.3390/s20133692 SN - 1424-8220 VL - 20 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Neumann, Bettina A1 - Kielb, Patrycja A1 - Rustam, Lina A1 - Fischer, Anna A1 - Weidinger, Inez M. A1 - Wollenberger, Ulla T1 - Bioelectrocatalytic Reduction of Hydrogen Peroxide by Microperoxidase-11 Immobilized on Mesoporous Antimony-Doped Tin Oxide JF - ChemElectrChem N2 - The heme-undecapeptide microperoxidase-11 (MP-11) was immobilized on mesoporous antimony-doped tin oxide (ATO) thin-film electrodes modified with the positively charged binding promotor polydiallyldimethylammonium chloride. Surface concentrations of MP-11 of 1.5 nmol cm(-2) were sufficiently high to enable spectroelectrochemical analyses. UV/Vis spectroscopy and resonance Raman spectroscopy revealed that immobilized MP-11 adopts a six-coordinated low-spin conformation, as in solution in the presence of a polycation. Cathodic reduction of hydrogen peroxide at potentials close to +500mV versus Ag/AgCl indicates that the reaction proceeds via a Compound I-type like intermediate, analogous to natural peroxidases, and confirms mesoporous ATO as a suitable host material for adsorbing the heme-peptide in its native state. A hydrogen peroxide sensor is proposed by using the bioelectrocatalytic properties of the MP-11-modified ATO. KW - electrochemistry KW - enzyme catalysis KW - mesoporous materials KW - microperoxidase KW - spectroelectrochemistry Y1 - 2017 U6 - https://doi.org/10.1002/celc.201600776 SN - 2196-0216 VL - 4 IS - 4 SP - 913 EP - 919 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Neumann, Bettina A1 - Götz, Robert A1 - Wrzolek, Pierre A1 - Scheller, Frieder W. A1 - Weidinger, Inez M. A1 - Schwalbe, Matthias A1 - Wollenberger, Ulla T1 - Enhancement of the Electrocatalytic Activity of Thienyl-Substituted Iron Porphyrin Electropolymers by a Hangman Effect JF - ChemCatChem : heterogeneous & homogeneous & bio- & nano-catalysis ; a journal of ChemPubSoc Europe N2 - The thiophene-modified iron porphyrin FeT3ThP and the respective iron Hangman porphyrin FeH3ThP, incorporating a carboxylic acid hanging group in the second coordination sphere of the iron center, were electropolymerized on glassy carbon electrodes using 3,4-ethylenedioxythiophene (EDOT) as co-monomer. Scanning electron microscopy images and Resonance Raman spectra demonstrated incorporation of the porphyrin monomers into a fibrous polymer network. Porphyrin/polyEDOT films catalyzed the reduction of molecular oxygen in a four-electron reaction to water with onset potentials as high as +0.14V vs. Ag/AgCl in an aqueous solution of pH7. Further, FeT3ThP/polyEDOT films showed electrocatalytic activity towards reduction of hydrogen peroxide at highly positive potentials, which was significantly enhanced by introduction of the carboxylic acid hanging group in FeH3ThP. The second coordination sphere residue promotes formation of a highly oxidizing reaction intermediate, presumably via advantageous proton supply, as observed for peroxidases and catalases making FeH3ThP/polyEDOT films efficient mimics of heme enzymes. KW - activation of oxygen species KW - electro-polymerization KW - Hangman porphyrin KW - heterogeneous catalysis KW - immobilization Y1 - 2018 U6 - https://doi.org/10.1002/cctc.201800934 SN - 1867-3880 SN - 1867-3899 VL - 10 IS - 19 SP - 4353 EP - 4361 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Frasca, Stefano A1 - Rojas, Oscar A1 - Salewski, Johannes A1 - Neumann, Bettina A1 - Stiba, Konstanze A1 - Weidinger, Inez M. A1 - Tiersch, Brigitte A1 - Leimkühler, Silke A1 - Koetz, Joachim A1 - Wollenberger, Ursula T1 - Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode JF - Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society N2 - The present study reports a facile approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase (hSO) immobilized on a gold nanoparticles modified electrode. The spherical core shell AuNPs were prepared via a new method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquids resulting particles with a diameter less than 10 nm. These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode where then hSO was adsorbed and an enhanced interfacial electron transfer and electrocatalysis was achieved. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s, a linear detection range between 0.5 and 5.4 mu M with a high sensitivity (1.85 nA mu M-1). The investigated system provides remarkable advantages in the possibility to work at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples. KW - Direct electron transfer KW - Gold nanoparticle KW - Human sulfite oxidase KW - Ionic liquid KW - Sulfite biosensor Y1 - 2012 U6 - https://doi.org/10.1016/j.bioelechem.2011.11.012 SN - 1567-5394 VL - 87 SP - 33 EP - 41 PB - Elsevier CY - Lausanne ER -