TY - GEN A1 - Camargo, Rodolfo Gonzalez A1 - Riccardi, Daniela Mendes dos Reis A1 - Ribeiro, Henrique Quintas Teixeira A1 - Carnevali Junior, Luiz Carlos A1 - Matos-Neto, Emidio Marques de A1 - Enjiu, Lucas A1 - Neves, Rodrigo Xavier A1 - Lima, Joanna Darck Carola Correia A1 - Figuerêdo, Raquel Galvão A1 - Alcântara, Paulo Sérgio Martins de A1 - Maximiano, Linda A1 - Otoch, José A1 - Batista Jr., Miguel Luiz A1 - Püschel, Gerhard Paul A1 - Seelaender, Marilia T1 - NF-kappa Bp65 and expression of its pro-inflammatory target genes are upregulated in the subcutaneous adipose tissue of cachectic cancer patients N2 - Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-κB). We have examined the gene expression of the subunits NF-κBp65 and NF-κBp50, as well as NF-κBp65 and NF-κBp50 binding, the gene expression of pro-inflammatory mediators under NF-κB control (IL-1β, IL-6, INF-γ, TNF-α, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-κBp65 and its target genes expression (TNF-α, IL-1β, MCP-1 and IκB-α) were significantly higher in cachectic cancer patients. Moreover, NF-κBp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-κB pathway plays a role in the promotion of WAT inflammation during cachexia. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 349 KW - cancer cachexia KW - inflammation KW - white adipose tissue KW - NF-κB KW - IκB Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400163 ER - TY - GEN A1 - Prüfer, Nicole A1 - Kleuser, Burkhard A1 - van der Giet, Markus T1 - The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality N2 - The high-density lipoprotein (HDL) is one of the most important endogenous cardiovascular protective markers. HDL is an attractive target in the search for new pharmaceutical therapies and in the prevention of cardiovascular events. Some of HDL’s anti-atherogenic properties are related to the signaling molecule sphingosine-1-phosphate (S1P), which plays an important role in vascular homeostasis. However, for different patient populations it seems more complicated. Significant changes in HDL’s protective potency are reduced under pathologic conditions and HDL might even serve as a proatherogenic particle. Under uremic conditions especially there is a change in the compounds associated with HDL. S1P is reduced and acute phase proteins such as serum amyloid A (SAA) are found to be elevated in HDL. The conversion of HDL in inflammation changes the functional properties of HDL. High amounts of SAA are associated with the occurrence of cardiovascular diseases such as atherosclerosis. SAA has potent pro-atherogenic properties, which may have impact on HDL’s biological functions, including cholesterol efflux capacity, antioxidative and anti-inflammatory activities. This review focuses on two molecules that affect the functionality of HDL. The balance between functional and dysfunctional HDL is disturbed after the loss of the protective sphingolipid molecule S1P and the accumulation of the acute-phase protein SAA. This review also summarizes the biological activities of lipid-free and lipid-bound SAA and its impact on HDL function. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 340 KW - atherosclerosis KW - high-density lipoprotein (HDL) KW - inflammation KW - serum amyloid A (SAA) KW - sphingosine-1-phosphate (S1P) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398648 ER -