TY - CHAP A1 - Saalfrank, Peter A1 - Bedurke, Florian A1 - Heide, Chiara A1 - Klamroth, Tillmann A1 - Klinkusch, Stefan A1 - Krause, Pascal A1 - Nest, Mathias A1 - Tremblay, Jean Christophe ED - Ruud, Kenneth ED - Brändas, Erkki J. T1 - Molecular attochemistry: correlated electron dynamics driven by light T2 - Advances in quantum chemistry N2 - Modern laser technology and ultrafast spectroscopies have pushed the timescales for detecting and manipulating dynamical processes in molecules from the picosecond over femtosecond domains, to the attosecond regime (1 as = 10(-18) s). This way, real-time dynamics of electrons after their photoexcitation can be probed and manipulated. In particular, experiments are moving more and more from atomic and solid state systems to molecules, opening the fields of "molecular electron dynamics" and "attosecond chemistry." Also on the theory side, powerful quantum dynamical tools have been developed to rationalize experiments on ultrafast electron dynamics in molecular species.
In this contribution, we concentrate on theoretical aspects of ultrafast electron dynamics in molecules, mostly driven by lasers. The dynamics will be described with the help of wavefunction-based ab initio methods such as time-dependent configuration interaction (TD-CI) or the multiconfigurational time-dependent Hartree-Fock (MCTDHF) methods. Besides a survey of the methods and their extensions toward, e.g., treatment of ionization, laser pulse optimization, and open quantum systems, two specific examples of applications will be considered: The creation and/or dynamical fate of electronic wavepackets, and the nonlinear optical response to laser pulse excitation in molecules by high harmonic generation (HHG). KW - dipole approximation KW - electron dynamics KW - electronic wavepackets KW - high harmonic generation KW - ionization KW - optimal control theory KW - time-dependent Schrödinger equation Y1 - 2020 SN - 978-0-12-819757-8 U6 - https://doi.org/10.1016/bs.aiq.2020.03.001 SN - 0065-3276 VL - 81 SP - 15 EP - 50 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Bedurke, Florian A1 - Klamroth, Tillmann A1 - Krause, Pascal A1 - Saalfrank, Peter T1 - Discriminating organic isomers by high harmonic generation BT - A time-dependent configuration interaction singles study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - High Harmonic Generation (HHG) is a nonlinear optical process that provides a tunable source for high-energy photons and ultrashort laser pulses. Recent experiments demonstrated that HHG spectroscopy may also be used as an analytical tool to discriminate between randomly oriented configurational isomers of polyatomic organic molecules, namely, between the cis- and trans-forms of 1,2-dichloroethene (DCE) [M. C. H. Wong et al., Phys. Rev. A 84, 051403 (2011)]. Here, we suggest as an economic and at the same time a reasonably accurate method to compute HHG spectra for polyatomic species, Time-Dependent Configuration Interaction Singles (TD-CIS) theory in combination with extended atomic orbital bases and different models to account for ionization losses. The HHG spectra are computed for aligned and unaligned cis- and trans-DCE. For the unaligned case, a coherent averaging over possible rotational orientations is introduced. Furthermore, using TD-CIS, possible differences between the HHG spectra of cis- and trans-DCE are studied. For aligned molecules, spectral differences between cis and trans emerge, which can be related to their different point group symmetries. For unaligned, randomly oriented molecules, we also find distinct HHG spectra in partial agreement with experiment. In addition to HHG response in the frequency space, we compute time-frequency HHG spectra to gain insight into which harmonics are emitted at which time. Further differences between the two isomers emerge, suggesting time-frequency HHG as another tool to discriminate configurational isomers. Y1 - 2019 U6 - https://doi.org/10.1063/1.5096473 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Krause, Pascal A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Time-dependent response of dissipative electron systems N2 - We present a systematic study of the influence of energy and phase relaxation on dynamic polarizability simulations in the linear response regime. The nonperturbative approach is based on explicit electron dynamics using short laser pulses of low intensities. To include environmental effects on the property calculation, we use the time- dependent configuration-interaction method in its reduced density matrix formulation. Both energy dissipation and nonlocal pure dephasing are included. The explicit treatment of time-resolved electron dynamics gives access to the phase shift between the electric field and the induced dipole moment, which can be used to define a useful uncertainty measure for the dynamic polarizability. The nonperturbative treatment is compared to perturbation theory expressions, as applied to a simple model system, the rigid H-2 molecule. It is shown that both approaches are equivalent for low field intensities, but the time-dependent treatment provides complementary information on the phase of the induced dipole moment, which allows for the definition of an uncertainty associated with the computation of the dynamic polarizability in the linear response regime. Y1 - 2010 UR - http://pra.aps.org/ U6 - https://doi.org/10.1103/Physreva.81.063420 SN - 1050-2947 ER - TY - JOUR A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Huber, C. A1 - Krause, Pascal T1 - Laser-driven electron dynamics at interfaces N2 - In this paper we present time-dependent, quantum-dynamical simulations of photoinduced processes at solid surfaces involving nonadiabatic transitions of electrons to and from short-lived intermediate excited states. In particular, two-photon photoemission (2PPE) spectra of naked metal surfaces and free-standing metal films are considered. One major problem in both cases is the presence of electron-electron scattering, which is treated here in various ways. The first way is to adopt an open-system density matrix approach, in which a single electron is weakly coupled to a "bath" of other electrons. The second approach is based on a many-electron Schrodinger equation, which is solved with the help of a time-dependent configuration interactions singles (TD-CIS) method Y1 - 2005 SN - 0021-2148 ER - TY - JOUR A1 - Krause, Pascal A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Time-dependent configuration-interaction calculations of laser-pulse-driven many-electron dynamics : Controlled dipole switching in lithium cyanide N2 - We report simulations of laser-driven many-electron dynamics by means of the time-dependent configuration interaction singles (doubles) approach. The method accounts for the correlation of ground and excited states, is capable of describing explicitly time-dependent, nonlinear phenomena, and is systematically improvable. Lithium cyanide serves as a molecular test system in which the charge distribution and hence the dipole moment are shown to be switchable, in a controlled fashion, by (a series of) laser pulses which induce selective, state-to-state electronic transitions. One focus of our time-dependent calculations is the question of how fast the transition from the ionic ground state to a specific excited state that is embedded in a multitude of other states can be made, without creating an electronic wave packet. (c) 2005 American Institute of Physics Y1 - 2005 SN - 0021-9606 ER - TY - THES A1 - Krause, Pascal T1 - Many-electron dynamics in molecules by means of time-dependent configuration interaction methods Y1 - 2007 CY - Potsdam ER -