TY - JOUR A1 - Otten, Cecile A1 - Knox, Jessica A1 - Boulday, Gwenola A1 - Eymery, Mathias A1 - Haniszewski, Marta A1 - Neuenschwander, Martin A1 - Radetzki, Silke A1 - Vogt, Ingo A1 - Haehn, Kristina A1 - De Luca, Coralie A1 - Cardoso, Cecile A1 - Hamad, Sabri A1 - Igual Gil, Carla A1 - Roy, Peter A1 - Albiges-Rizo, Corinne A1 - Faurobert, Eva A1 - von Kries, Jens P. A1 - Campillos, Monica A1 - Tournier-Lasserve, Elisabeth A1 - Derry, William Brent A1 - Abdelilah-Seyfried, Salim T1 - Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations JF - EMBO molecular medicine N2 - Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients. KW - angiogenesis KW - CCM KW - ERK5 KW - indirubin-3-monoxime KW - KLF2 Y1 - 2018 U6 - https://doi.org/10.15252/emmm.201809155 SN - 1757-4676 SN - 1757-4684 VL - 10 IS - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Igual Gil, Carla A1 - Jarius, Mirko A1 - von Kries, Jens P. A1 - Rohlfing, Anne-Kartin T1 - Neuronal Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in C. elegans JF - Frontiers in physiology N2 - Aquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into aqp-8 expression and regulation in Caenorhabditis elegans. We show, that upon exposure to osmotic stress, aqp-8 exhibits a distinct expression pattern within the excretory cell compared to other C. elegans aquaporins expressed. This expression is correlated to the osmolarity of the surrounding medium and can be activated physiologically by osmotic stress or genetically in mutants with constitutively active osmotic stress response. In addition, we found aqp-8 expression to be constitutively active in the TRPV channel mutant osm-9(ok1677). In a genome-wide RNAi screen we identified additional regulators of aqp-8. Many of these regulators are connected to chemosensation by the amphid neurons, e.g., odr-10 and gpa-6, and act as suppressors of aqp-8 expression. We postulate from our results, that aqp-8 plays an important role in sustaining the salt/water balance during a secondary response to hyper-osmotic stress. Upon its activation aqp-8 promotes vesicle docking to the lumen of the excretory cell and thereby enhances the ability to secrete water and transport osmotic active substances or waste products caused by protein damage. In summary, aqp-8 expression and function is tightly regulated by a network consisting of the osmotic stress response, neuronal chemosensation as well as the response to protein damage. These new insights in maintaining the salt/water balance in C. elegans will help to reveal the complex homeostasis network preserved throughout species. KW - aquaporin KW - osmoregulation KW - osmotic stress KW - chemosensation KW - C. elegans Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00380 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER -