TY - THES A1 - Schemenz, Victoria T1 - Correlations between osteocyte lacuno-canalicular network and material characteristics in bone adaptation and regeneration T1 - Korrelationen zwischen dem lakuno-kanalikulären Netzwerk der Osteozyten und Materialeigenschaften bei der Knochenanpassung und -regeneration N2 - The complex hierarchical structure of bone undergoes a lifelong remodeling process, where it adapts to mechanical needs. Hereby, bone resorption by osteoclasts and bone formation by osteoblasts have to be balanced to sustain a healthy and stable organ. Osteocytes orchestrate this interplay by sensing mechanical strains and translating them into biochemical signals. The osteocytes are located in lacunae and are connected to one another and other bone cells via cell processes through small channels, the canaliculi. Lacunae and canaliculi form a network (LCN) of extracellular spaces that is able to transport ions and enables cell-to-cell communication. Osteocytes might also contribute to mineral homeostasis by direct interactions with the surrounding matrix. If the LCN is acting as a transport system, this should be reflected in the mineralization pattern. The central hypothesis of this thesis is that osteocytes are actively changing their material environment. Characterization methods of material science are used to achieve the aim of detecting traces of this interaction between osteocytes and the extracellular matrix. First, healthy murine bones were characterized. The properties analyzed were then compared with three murine model systems: 1) a loading model, where a bone of the mouse was loaded during its life time; 2) a healing model, where a bone of the mouse was cut to induce a healing response; and 3) a disease model, where the Fbn1 gene is dysfunctional causing defects in the formation of the extracellular tissue. The measurement strategy included routines that make it possible to analyze the organization of the LCN and the material components (i.e., the organic collagen matrix and the mineral particles) in the same bone volumes and compare the spatial distribution of different data sets. The three-dimensional network architecture of the LCN is visualized by confocal laser scanning microscopy (CLSM) after rhodamine staining and is then subsequently quantified. The calcium content is determined via quantitative backscattered electron imaging (qBEI), while small- and wide-angle X-ray scattering (SAXS and WAXS) are employed to determine the thickness and length of local mineral particles. First, tibiae cortices of healthy mice were characterized to investigate how changes in LCN architecture can be attributed to interactions of osteocytes with the surrounding bone matrix. The tibial mid-shaft cross-sections showed two main regions, consisting of a band with unordered LCN surrounded by a region with ordered LCN. The unordered region is a remnant of early bone formation and exhibited short and thin mineral particles. The surrounding, more aligned bone showed ordered and dense LCN as well as thicker and longer mineral particles. The calcium content was unchanged between the two regions. In the mouse loading model, the left tibia underwent two weeks of mechanical stimulation, which results in increased bone formation and decreased resorption in skeletally mature mice. Here the specific research question addressed was how do bone material characteristics change at (re)modeling sites? The new bone formed in response to mechanical stimulation showed similar properties in terms of the mineral particles, like the ordered calcium region but lower calcium content compared to the right, non-loaded control bone of the same mice. There was a clear, recognizable border between mature and newly formed bone. Nevertheless, some canaliculi went through this border connecting the LCN of mature and newly formed bone. Additionally, the question should be answered whether the LCN topology and the bone matrix material properties adapt to loading. Although, mechanically stimulated bones did not show differences in calcium content compared to controls, different correlations were found between the local LCN density and the local Ca content depending on whether the bone was loaded or not. These results suggest that the LCN may serve as a mineral reservoir. For the healing model, the femurs of mice underwent an osteotomy, stabilized with an external fixator and were allowed to heal for 21 days. Thus, the spatial variations in the LCN topology with mineral properties within different tissue types and their interfaces, namely calcified cartilage, bony callus and cortex, could be simultaneously visualized and compared in this model. All tissue types showed structural differences across multiple length scales. Calcium content increased and became more homogeneous from calcified cartilage to bony callus to lamellar cortical bone. The degree of LCN organization increased as well, while the lacunae became smaller, as did the lacunar density between these different tissue types that make up the callus. In the calcified cartilage, the mineral particles were short and thin. The newly formed callus exhibited thicker mineral particles, which still had a low degree of orientation. While most of the callus had a woven-like structure, it also served as a scaffold for more lamellar tissue at the edges. The lamelar bone callus showed thinner mineral particles, but a higher degree of alignment in both, mineral particles and the LCN. The cortex showed the highest values for mineral length, thickness and degree of orientation. At the same time, the lacunae number density was 34% lower and the lacunar volume 40% smaller compared to bony callus. The transition zone between cortical and callus regions showed a continuous convergence of bone mineral properties and lacunae shape. Although only a few canaliculi connected callus and the cortical region, this indicates that communication between osteocytes of both tissues should be possible. The presented correlations between LCN architecture and mineral properties across tissue types may suggest that osteocytes have an active role in mineralization processes of healing. A mouse model for the disease marfan syndrome, which includes a genetic defect in the fibrillin-1 gene, was investigated. In humans, Marfan syndrome is characterized by a range of clinical symptoms such as long bone overgrowth, loose joints, reduced bone mineral density, compromised bone microarchitecture, and increased fracture rates. Thus, fibrillin-1 seems to play a role in the skeletal homeostasis. Therefore, the present work studied how marfan syndrome alters LCN architecture and the surrounding bone matrix. The mice with marfan syndrome showed longer tibiae than their healthy littermates from an age of seven weeks onwards. In contrast, the cortical development appeared retarded, which was observed across all measured characteristics, i. e. lower endocortical bone formation, looser and less organized lacuno-canalicular network, less collagen orientation, thinner and shorter mineral particles. In each of the three model systems, this study found that changes in the LCN architecture spatially correlated with bone matrix material parameters. While not knowing the exact mechanism, these results provide indications that osteocytes can actively manipulate a mineral reservoir located around the canaliculi to make a quickly accessible contribution to mineral homeostasis. However, this interaction is most likely not one-sided, but could be understood as an interplay between osteocytes and extra-cellular matrix, since the bone matrix contains biochemical signaling molecules (e.g. non-collagenous proteins) that can change osteocyte behavior. Bone (re)modeling can therefore not only be understood as a method for removing defects or adapting to external mechanical stimuli, but also for increasing the efficiency of possible osteocyte-mineral interactions during bone homeostasis. With these findings, it seems reasonable to consider osteocytes as a target for drug development related to bone diseases that cause changes in bone composition and mechanical properties. It will most likely require the combined effort of materials scientists, cell biologists, and molecular biologists to gain a deeper understanding of how bone cells respond to their material environment. N2 - Knochen haben eine komplexe hierarchische Struktur, die einen lebenslangen Umbauprozess durchläuft, bei dem der Knochen sich seinen mechanischen Anforderungen anpasst. Um ein gesundes und stabiles Organ zu erhalten müssen Knochenresorption (durch Osteoklasten) und Knochenbildung (durch Osteoblasten) ausgewogen sein. Osteozyten lenken dieses Wechselspiel, indem sie mechanische Belastungen wahrnehmen und sie in biochemische Signale übersetzen. Die Osteozyten sitzen in Lakunen und sind durch Kanälchen untereinander und mit anderen Knochenzellen über ein Netzwerk (LCN) verbunden, das in der Lage ist, Ionen zu transportieren und eine Kommunikation von Zelle zu Zelle zu ermöglichen. Außerdem vermutet man, dass Osteozyten auch durch direkte Wechselwirkungen mit der umgebenden Matrix zur Mineralhomöostase beitragen könnten. Im Mittelpunkt dieser Arbeit steht die Frage, ob Osteozyten ihre materielle Umgebung aktiv verändern können. Um Spuren dieser Wechselwirkung zwischen Osteozyten und der extrazellulären Matrix nachzuweisen, werden materialwissenschaftliche Charakterisierungsmethoden eingesetzt. Zunächst wurden gesunde Mäuseknochen charakterisiert. Die erworbenen Ergebnisse wurden dann mit drei murinen Modellsystemen verglichen: 1) einem Belastungsmodell; 2) ein Heilungsmodell und 3) ein Krankheitsmodell, bei dem das Fbn1-Gen dysfunktional ist und Defekte in der Bildung des extrazellulären Gewebes verursacht werden. Die Messstrategie umfasste Routinen, die es ermöglichen, die Organisation des LCN und der Materialkomponenten (d.h. die organische Kollagenmatrix und die mineralischen Partikel) in denselben Knochenvolumina zu analysieren und die räumliche Verteilung der verschiedenen Datensätze zu vergleichen. Die dreidimensionale Netzwerkarchitektur des LCN wird durch konfokale Laser-Scanning-Mikroskopie nach Rhodamin-Färbung gemessen und anschließend quantifiziert. Der Kalziumgehalt wird mittels quantitativer Rückstreuelektronenbildgebung bestimmt, während Klein- und Weitwinkel-Röntgenstreuung verwendet werden, um die Dicke und Länge der Mineralpartikel zu bestimmen. Zunächst wurden Querschnitte der Unterschenkel von gesunden Mäusen charakterisiert, um zu untersuchen, ob Veränderungen in der LCN-Architektur auf Wechselwirkungen von Osteozyten mit der umgebenden Knochenmatrix zurückgeführt werden können. Die Kortizes zeigten zwei Hauptregionen, ein Band mit ungeordneter LCN-Architektur, umgeben von einer Region mit geordneter LCN. Die ungeordnete Region ist ein Überbleibsel der frühen Knochenbildung und wies kurze und dünne Mineralpartikel auf. Der umgebende, stärker ausgerichtete Knochen zeigte ein geordnetes und dichtes LCN, sowie dickere und längere Mineralpartikel. Der Kalziumgehalt blieb bei beiden Regionen unverändert. Im Mausbelastungsmodell wurde das linke Schienbein zwei Wochen lang mechanisch stimuliert, was zu einer erhöhten Knochenbildung führt. Hier sollte die Forschungsfrage beantwortet werden, wie sich Knochenmaterialeigenschaften an (Re-)Modellierungsstellen aufgrund von Belastung ändern. Der, als Reaktion auf die mechanische Stimulation, gebildete neue Knochen zeigte ähnliche Eigenschaften in Bezug auf die Mineralpartikel, wie die geordnete Kortexregion. Es gab eine klar erkennbare Grenze zwischen reifem und neu gebildetem Knochen. Trotzdem gingen einige Kanälchen durch diese Grenze, die die LCN aus reifem und neu gebildetem Knochen verband. Für das Heilungsmodell wurden die Oberschenkel von Mäusen einer Osteotomie unterzogen (einer Operation, bei der durch einen Schnitt in der Diaphyse ein Bruch erzeugt wird). Danach konnte die Fraktur 21 Tage heilen. Dadurch konnten in diesem Modell gleichzeitig verkalkter Knorpel, knöcherner Kallus und Kortex untersucht werden. Dafür wurde die räumliche Verteilung der LCN-Topologie sowie die Mineraleigenschaften der verschiedenen Gewebetypen und ihrer Grenzflächen visualisiert und verglichen. Alle Gewebetypen zeigten strukturelle Unterschiede über mehrere Längenskalen hinweg. Der Kalziumgehalt nahm von kalzifiziertem Knorpel zu knöchernem Kallus zu lamellarem kortikalem Knochen zu und wurde homogener. Der Grad der LCN-Organisation nahm ebenfalls zu, während die Lakunen vom Kallus zum Kortexgewebe kleiner wurden, ebenso wie die Lakunendichte. Im verkalkten Knorpel waren die Mineralpartikel kurz und dünn. Der größte Teil des Kallus wies eine Geflechtsknochenstruktur auf und diente als Gerüst für lamellares Gewebe, das dünnere Mineralpartikel, aber einen höheren Grad an Ausrichtung sowohl in den Mineralpartikeln als auch im LCN aufwies. Der Kortex zeigte die höchsten Werte für Minerallänge, Dicke und Orientierungsgrad. Obwohl nur wenige Kanälchen den Kallus und kortikale Regionen verbinden, weist dies darauf hin, dass eine Kommunikation zwischen Osteozyten beider Gewebe möglich sein sollte. Es wurde auch ein Mausmodell für das Marfan-Syndrom untersucht, das einen Gendefekt im Fibrillin-1-Gen beinhaltet. Beim Menschen ist das Marfan-Syndrom durch eine Reihe klinischer Symptome gekennzeichnet, wie z. B. übermäßiges Wachstum der Gliedmaßen, überstreckbare Gelenke, verringerte Knochenmineraldichte, beeinträchtigte Knochenmikroarchitektur und erhöhte Frakturraten. Somit scheint Fibrillin-1 eine Rolle in der Skeletthomöostase zu spielen. Deswegen untersuchte die vorliegende Arbeit, ob und wie das Marfan-Syndrom die LCN-Architektur und die umgebende Knochenmatrix verändert. Die Mäuse mit Marfan-Syndrom zeigten bereits ab einem Alter von sieben Wochen längere Schienbeine als ihre gesunden Wurfgeschwister. Im Gegensatz dazu erschien die kortikale Entwicklung verzögert, was über alle gemessenen Merkmale hinweg beobachtet wurde, d.h. niedrigere endokortikale Knochenbildung, lockereres und weniger organisiertes LCN, geringerer Grad an Kollagenorientierung sowie ein Trend zu dünneren und kürzeren Mineralpartikel. In jedem der drei Modellsysteme fand diese Studie, dass Änderungen in der LCN-Architektur räumlich mit Parametern des Knochenmatrixmaterials korrelierten. Obwohl der genaue Mechanismus nicht bekannt ist, liefern diese Ergebnisse Hinweise darauf, dass Osteozyten ein Mineralreservoir aktiv manipulieren können. Dieses Reservoir befindet sich um die Kanälchen herum und dieser Prozess würde es ermöglichen, einen schnell zugänglichen Beitrag zur Mineralhomöostase zu leisten. Diese Interaktion ist jedoch höchstwahrscheinlich nicht einseitig, sondern könnte als Wechselspiel zwischen Osteozyten und extrazellulärer Matrix verstanden werden, da die Knochenmatrix biochemische Signalmoleküle enthält, die das Verhalten von Osteozyten verändern können. Knochen(re)modellierung kann daher nicht nur als Methode zur Defektbeseitigung oder Anpassung an äußere mechanische Reize verstanden werden, sondern auch zur Effizienzsteigerung möglicher Osteozyten-Mineral-Interaktionen während der Knochenhomöostase. Angesichts dieser Ergebnisse erscheint es sinnvoll, Osteozyten als Ziel für die Arzneimittelentwicklung im Zusammenhang mit Knochenerkrankungen in Betracht zu ziehen, die Veränderungen der Knochenzusammensetzung und deren mechanischen Eigenschaften verursachen. KW - bone KW - lacunae KW - mineralization KW - SAXS KW - lacuno-canalicular network KW - µCT KW - CLSM KW - konfokales Laser-Scanning-Mikroskop KW - Kleinwinkelröntgenstreuung KW - Knochen KW - Lakunen KW - lakuno-kanaliculäres Netzwerk KW - Mineralisierung KW - µCT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559593 ER - TY - THES A1 - Laeger, Thomas T1 - Protein-dependent regulation of feeding, metabolism, and development of type 2 diabetes T1 - Proteinabhängige Regulation der Nahrungsaufnahme und des Metabolismus sowie Entstehung des Typ-2-Diabetes BT - FGF21’s biological role BT - die Rolle von FGF21 N2 - Food intake is driven by the need for energy but also by the demand for essential nutrients such as protein. Whereas it was well known how diets high in protein mediate satiety, it remained unclear how diets low in protein induce appetite. Therefore, this thesis aims to contribute to the research area of the detection of restricted dietary protein and adaptive responses. This thesis provides clear evidence that the liver-derived hormone fibroblast growth factor 21 (FGF21) is an endocrine signal of a dietary protein restriction, with the cellular amino acid sensor general control nonderepressible 2 (GCN2) kinase acting as an upstream regulator of FGF21 during protein restriction. In the brain, FGF21 is mediating the protein-restricted metabolic responses, e.g. increased energy expenditure, food intake, insulin sensitivity, and improved glucose homeostasis. Furthermore, endogenous FGF21 induced by dietary protein or methionine restriction is preventing the onset of type 2 diabetes in the New Zealand Obese mouse. Overall, FGF21 plays an important role in the detection of protein restriction and macronutrient imbalance in rodents and humans, and mediates both the behavioral and metabolic responses to dietary protein restriction. This makes FGF21 a critical physiological signal of dietary protein restriction, highlighting the important but often overlooked impact of dietary protein on metabolism and eating behavior, independent of dietary energy content. N2 - Die Nahrungsaufnahme wird nicht nur durch den Bedarf an Energie, sondern auch durch den Bedarf an essenziellen Nährstoffen wie z. B. Protein bestimmt. Es war zwar bekannt, wie proteinreiche Nahrung eine Sättigung vermittelt, jedoch war unklar, wie eine proteinarme Ernährung den Appetit anregt. Ziel dieser Arbeit ist es daher, zu untersuchen, wie Nahrung mit einem niedrigen Proteingehalt detektiert wird und die Anpassung des Organismus im Hinblick auf den Metabolismus und das Ernährungsverhalten erfolgt. Diese Arbeit liefert klare Beweise dafür, dass das aus der Leber stammende Hormon Fibroblast growth factor 21 (FGF21) ein endokrines Signal einer Nahrungsproteinrestriktion ist, wobei der zelluläre Aminosäuresensor general control nonderepressible 2 kinase (GCN2) als Regulator von FGF21 während der Proteinrestriktion fungiert. Im Gehirn vermittelt FGF21 die durch Proteinrestriktion induzierten Stoffwechselreaktionen, z.B. den Anstieg des Energieverbrauches, die Erhöhung der Nahrungsaufnahme und eine Verbesserung der Insulinsensitivität sowie der Glukosehomöostase. Darüber hinaus schützt das durch eine protein- oder methioninarme Diät induzierte FGF21 New Zealand Obese (NZO)-Mäuse, einem Tiermodell für den humanen Typ-2-Diabetes, vor einer Diabetesentstehung. FGF21 spielt bei Nagetieren und Menschen eine wichtige Rolle hinsichtlich der Detektion einer diätetischen Proteinrestriktion sowie eines Ungleichgewichtes der Makronährstoffe zueinander und vermittelt die adaptiven Verhaltens- und Stoffwechselreaktionen. Dies macht FGF21 zu einem kritischen physiologischen Signal der Nahrungsproteinrestriktion und unterstreicht den wichtigen, aber oft übersehenen Einfluss der Nahrungsproteine auf den Stoffwechsel und das Nahrungsaufnahmeverhalten, unabhängig vom Energiegehalt der Nahrung. KW - protein restriction KW - autophagy KW - thermogenesis KW - appetite KW - hyperglycemia KW - methionine restriction KW - bone KW - FGF21 KW - energy expenditure KW - GCN2 KW - metabolism KW - food choice KW - type 2 diabetes Y1 - 2021 ER - TY - JOUR A1 - Meyer, Ursina A1 - Ernst, Dominique A1 - Schott, Silvia A1 - Riera, Claudia A1 - Hattendorf, Jan A1 - Romkes, Jacqueline A1 - Granacher, Urs A1 - Göpfert, Beat A1 - Kriemler, Susi T1 - Validation of two accelerometers to determine mechanical loading of physical activities in children JF - Journal of sports sciences N2 - The purpose of this study was to assess the validity of accelerometers using force plates (i.e., ground reaction force (GRF)) during the performance of different tasks of daily physical activity in children. Thirteen children (10.1 (range 5.4-15.7)years, 3 girls) wore two accelerometers (ActiGraph GT3X+ (ACT), GENEA (GEN)) at the hip that provide raw acceleration signals at 100Hz. Participants completed different tasks (walking, jogging, running, landings from boxes of different height, rope skipping, dancing) on a force plate. GRF was collected for one step per trial (10 trials) for ambulatory movements and for all landings (10 trials), rope skips and dance procedures. Accelerometer outputs as peak loading (g) per activity were averaged. ANOVA, correlation analyses and Bland-Altman plots were computed to determine validity of accelerometers using GRF. There was a main effect of task with increasing acceleration values in tasks with increasing locomotion speed and landing height (P<0.001). Data from ACT and GEN correlated with GRF (r=0.90 and 0.89, respectively) and between each other (r=0.98), but both accelerometers consistently overestimated GRF. The new generation of accelerometer models that allow raw signal detection are reasonably accurate to measure impact loading of bone in children, although they systematically overestimate GRF. KW - bone KW - impact loading KW - children KW - physical activity KW - ground reaction force Y1 - 2015 U6 - https://doi.org/10.1080/02640414.2015.1004638 SN - 0264-0414 SN - 1466-447X VL - 33 IS - 16 SP - 1702 EP - 1709 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -