TY - JOUR A1 - Huwe, Björn A1 - Fiedler, Annelie A1 - Moritz, Sophie A1 - Rabbow, Elke A1 - de Vera, Jean-Pierre Paul A1 - Joshi, Jasmin Radha T1 - Mosses in Low Earth Orbit BT - Implications for the Limits of Life and the Habitability of Mars JF - Astrobiology N2 - As a part of the European Space Agency mission "EXPOSE-R2" on the International Space Station (ISS), the BIOMEX (Biology and Mars Experiment) experiment investigates the habitability of Mars and the limits of life. In preparation for the mission, experimental verification tests and scientific verification tests simulating different combinations of abiotic space- and Mars-like conditions were performed to analyze the resistance of a range of model organisms. The simulated abiotic space- and Mars-stressors were extreme temperatures, vacuum, and Mars-like surface ultraviolet (UV) irradiation in different atmospheres. We present for the first time simulated space exposure data of mosses using plantlets of the bryophyte genus Grimmia, which is adapted to high altitudinal extreme abiotic conditions at the Swiss Alps. Our preflight tests showed that severe UVR200-400nm irradiation with the maximal dose of 5 and 6.8 x 10(5) kJ center dot m(-2), respectively, was the only stressor with a negative impact on the vitality with a 37% (terrestrial atmosphere) or 36% reduction (space- and Mars-like atmospheres) in photosynthetic activity. With every exposure to UVR200-400nm 10(5) kJ center dot m(-2), the vitality of the bryophytes dropped by 6%. No effect was found, however, by any other stressor. As the mosses were still vital after doses of ultraviolet radiation (UVR) expected during the EXPOSE-R2 mission on ISS, we show that this earliest extant lineage of land plants is highly resistant to extreme abiotic conditions. KW - Extremotolerant KW - Bryophyte KW - Plant performance KW - Grimmia sp KW - Irradiation KW - UV irradiation Y1 - 2019 U6 - https://doi.org/10.1089/ast.2018.1889 SN - 1531-1074 SN - 1557-8070 VL - 19 IS - 2 SP - 221 EP - 232 PB - Liebert CY - New Rochelle ER - TY - JOUR A1 - Serrano, Paloma A1 - Alawi, Mashal A1 - de Vera, Jean-Pierre Paul A1 - Wagner, Dirk T1 - Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate JF - Astrobiology N2 - Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80 degrees C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions. KW - Methanogenic archaea KW - Simulated Mars-like conditions KW - Subfreezing temperatures KW - Martian regolith analogs KW - Perchlorate KW - Permafrost Y1 - 2019 U6 - https://doi.org/10.1089/ast.2018.1877 SN - 1531-1074 SN - 1557-8070 VL - 19 IS - 2 SP - 197 EP - 208 PB - Liebert CY - New Rochelle ER - TY - GEN A1 - de Vera, Jean-Pierre Paul A1 - Alawi, Mashal A1 - Backhaus, Theresa A1 - Baque, Mickael A1 - Billi, Daniela A1 - Boettger, Ute A1 - Berger, Thomas A1 - Bohmeier, Maria A1 - Cockell, Charles A1 - Demets, Rene A1 - de la Torre Noetzel, Rosa A1 - Edwards, Howell A1 - Elsaesser, Andreas A1 - Fagliarone, Claudia A1 - Fiedler, Annelie A1 - Foing, Bernard A1 - Foucher, Frederic A1 - Fritz, Jörg A1 - Hanke, Franziska A1 - Herzog, Thomas A1 - Horneck, Gerda A1 - Hübers, Heinz-Wilhelm A1 - Huwe, Björn A1 - Joshi, Jasmin Radha A1 - Kozyrovska, Natalia A1 - Kruchten, Martha A1 - Lasch, Peter A1 - Lee, Natuschka A1 - Leuko, Stefan A1 - Leya, Thomas A1 - Lorek, Andreas A1 - Martinez-Frias, Jesus A1 - Meessen, Joachim A1 - Moritz, Sophie A1 - Moeller, Ralf A1 - Olsson-Francis, Karen A1 - Onofri, Silvano A1 - Ott, Sieglinde A1 - Pacelli, Claudia A1 - Podolich, Olga A1 - Rabbow, Elke A1 - Reitz, Günther A1 - Rettberg, Petra A1 - Reva, Oleg A1 - Rothschild, Lynn A1 - Garcia Sancho, Leo A1 - Schulze-Makuch, Dirk A1 - Selbmann, Laura A1 - Serrano, Paloma A1 - Szewzyk, Ulrich A1 - Verseux, Cyprien A1 - Wadsworth, Jennifer A1 - Wagner, Dirk A1 - Westall, Frances A1 - Wolter, David A1 - Zucconi, Laura T1 - Limits of life and the habitability of Mars BT - the ESA space experiment BIOMEX on the ISS T2 - Astrobiology N2 - BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit. KW - EXPOSE-R2 KW - BIOMEX KW - Habitability KW - Limits of life KW - Extremophiles KW - Mars Y1 - 2019 U6 - https://doi.org/10.1089/ast.2018.1897 SN - 1531-1074 SN - 1557-8070 VL - 19 IS - 2 SP - 145 EP - 157 PB - Liebert CY - New Rochelle ER - TY - THES A1 - de Vera, Jean-Pierre Paul T1 - The relevance of ecophysiology in astrobiology and planetary research T1 - Die Relevanz der Ökophysiologie in der Astrobiologie und Planetenforschung BT - implications for the characterization of the habitability of planets and biosignatures BT - Implikationen für die Charakterisierung der Habitabilität von Planeten und Biosignaturen N2 - Eco-physiological processes are expressing the interaction of organisms within an environmental context of their habitat and their degree of adaptation, level of resistance as well as the limits of life in a changing environment. The present study focuses on observations achieved by methods used in this scientific discipline of “Ecophysiology” and to enlarge the scientific context in a broader range of understanding with universal character. The present eco-physiological work is building the basis for classifying and exploring the degree of habitability of another planet like Mars by a bio-driven experimentally approach. It offers also new ways of identifying key-molecules which are playing a specific role in physiological processes of tested organisms to serve as well as potential biosignatures in future space exploration missions with the goal to search for life. This has important implications for the new emerging scientific field of Astrobiology. Astrobiology addresses the study of the origin, evolution, distribution and future of life in the universe. The three fundamental questions which are hidden behind this definition are: how does life begin and evolve? Is there life beyond Earth and, if so, how can we detect it? What is the future of life on Earth and in the universe? It means that this multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System. It comprises the search for the evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System like the icy moons of the Jovian and Saturnian system, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space. For this purpose an integrated research strategy was applied, which connects field research, laboratory research allowing planetary simulation experiments with investigation enterprises performed in space (particularly performed in the low Earth Orbit. N2 - Ökophysiologische Prozesse sind durch Interaktionen der Organismen mit der Umwelt in ihrem Habitat, durch ihren Grad der Anpassungsfähigkeit, dem Grad der Resistenz als auch durch die Begrenzungen des Lebens in einer sich verändernden Umwelt gekennzeichnet. Die hier vorliegende Studie konzentriert sich auf die Ergebnisse, die durch die Anwendung der Methoden aus der wissenschaftlichen Disziplin „Ökophysiologie“ erzielt wurden und erlaubt eine Erweiterung dieses wissenschaftlichen Kontextes mit mehr universalem Charakter. Die vorliegende Ökophysiologische Arbeit bildet die Grundlage für eine Klassifizierung und Erkundung des Grades der Habitabilität eines anderen Planeten wie dem Mars durch experimentelle Ansätze. Sie zeigt auch neue Wege für die Identifizierung von Schlüsselmolekülen, die eine besondere Rolle in physiologischen Prozessen getesteter Organismen spielt, um auch als mögliche Biosignaturen für zukünftige Weltraumerkundungsmissionen mit dem Ziel der Suche nach Leben im All zu dienen. Das wirkt sich auch im besonderen Maße auf das sich neu ausbildende wissenschaftliche Feld der Astrobiologie aus. Die Astrobiologie befaßt sich mit der Erforschung des Ursprungs, der Entwicklung, der Verbreitung und Zukunft des Lebens im Universum. Die drei grundlegenden Fragen, die sich hinter dieser Definition verbergen, sind: wie entstand und entwickelte sich das Leben? Gibt es Leben außerhalb der Erde, und falls ja, wie können wir es nachweisen? Was ist die Zukunft des Lebens auf der Erde und im Universum? Das bedeutet, dass dieses viele Disziplinen umfassende Arbeitsfeld die Suche nach einer anderen habitablen Umwelt in unserem Sonnensystem und anderen habitablen Planeten außerhalb unseres Sonnensystems, die Suche nach der Evidenz präbiotischer Chemie und Leben auf dem Mars und anderen Himmelskörpern in unserem Sonnensystem, wie beispielsweise auf den Eismonden des Jupiter- und Saturnsystems, Labor- und Feldforschung bis hin zu den Ursprüngen und der Evolution des Lebens auf der Erde beinhaltet und Untersuchungen über das Potential von Leben, sich den Herausforderungen auf der Erde und im All anzupassen, mit einschließt. Zu diesem Zweck wurde eine ganzheitliche Forschungsstrategie angewendet, welche die Feldforschung, Laborforschung mit Planetensimulations-Experimenten und die Forschung im All(insbesondere die Untersuchungen im nahen Erdorbit) miteinander verbindet. KW - astrobiology KW - eco-physiology KW - planetary simulation KW - biosignatures KW - habitability KW - Astrobiologie KW - Ökophysiologie KW - Planetensimulation KW - Biosignaturen KW - Habitabilität Y1 - 2018 ER - TY - JOUR A1 - Schirmack, Janosch A1 - Boehm, Michael A1 - Brauer, Chris A1 - Löhmannsröben, Hans-Gerd A1 - de Vera, Jean-Pierre Paul A1 - Moehlmann, Diedrich A1 - Wagner, Dirk T1 - Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions JF - Planetary and space science N2 - On Earth, chemolithoautothrophic and anaerobic microorganisms such as methanogenic archaea are regarded as model organisms for possible subsurface life on Mars. For this reason, the methanogenic strain Methanosarcina soligelidi (formerly called Methanosarcina spec. SMA-21), isolated from permafrost-affected soil in northeast Siberia, has been tested under Martian thermo-physical conditions. In previous studies under simulated Martian conditions, high survival rates of these microorganisms were observed. In our study we present a method to measure methane production as a first attempt to study metabolic activity of methanogenic archaea during simulated conditions approaching conditions of Mars-like environments. To determine methanogenic activity, a measurement technique which is capable to measure the produced methane concentration with high precision and with high temporal resolution is needed. Although there are several methods to detect methane, only a few fulfill all the needed requirements to work within simulated extraterrestrial environments. We have chosen laser spectroscopy, which is a non-destructive technique that measures the methane concentration without sample taking and also can be run continuously. In our simulation, we detected methane production at temperatures down to -5 degrees C, which would be found on Mars either temporarily in the shallow subsurface or continually in the deep subsurface. The pressure of 50 kPa which we used in our experiments, corresponds to the expected pressure in the Martian near subsurface. Our new device proved to be fully functional and the results indicate that the possible existence of methanogenic archaea in Martian subsurface habitats cannot be ruled out. (C) 2013 Published by Elsevier Ltd. KW - Mars KW - Methanogens KW - Methane KW - Sub-zero temperature (Celsius) KW - Wavelength modulation spectroscopy (laser spectroscopy) Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2013.08.019 SN - 0032-0633 VL - 98 SP - 198 EP - 204 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - de Vera, Jean-Pierre Paul A1 - Böttger, Ute A1 - de la Torre Nötzel, Rosa A1 - Sanchez, Francisco J. A1 - Grunow, Dana A1 - Schmitz, Nicole A1 - Lange, Caroline A1 - Hübers, Heinz-Wilhelm A1 - Billi, Daniela A1 - Baque, Mickael A1 - Rettberg, Petra A1 - Rabbow, Elke A1 - Reitz, Günther A1 - Berger, Thomas A1 - Möller, Ralf A1 - Bohmeier, Maria A1 - Horneck, Gerda A1 - Westall, Frances A1 - Jänchen, Jochen A1 - Fritz, Jörg A1 - Meyer, Cornelia A1 - Onofri, Silvano A1 - Selbmann, Laura A1 - Zucconi, Laura A1 - Kozyrovska, Natalia A1 - Leya, Thomas A1 - Foing, Bernard A1 - Demets, Rene A1 - Cockell, Charles S. A1 - Bryce, Casey A1 - Wagner, Dirk A1 - Serrano, Paloma A1 - Edwards, Howell G. M. A1 - Joshi, Jasmin Radha A1 - Huwe, Björn A1 - Ehrenfreund, Pascale A1 - Elsaesser, Andreas A1 - Ott, Sieglinde A1 - Meessen, Joachim A1 - Feyh, Nina A1 - Szewzyk, Ulrich A1 - Jaumann, Ralf A1 - Spohn, Tilman T1 - Supporting Mars exploration BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology JF - Planetary and space science N2 - The Low Earth Orbit (LEO) experiment Biology and Mars Experiment (BIOMEX) is an interdisciplinary and international space research project selected by ESA. The experiment will be accommodated on the space exposure facility EXPOSE-R2 on the International Space Station (ISS) and is foreseen to be launched in 2013. The prime objective of BIOMEX is to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and for building a biosignature data base (e.g. the proposed creation of an international Raman library). The library will be highly relevant for future space missions such as the search for life on Mars. The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and to determine which interactions between biological samples and selected minerals (including terrestrial, Moon- and Mars analogs) can be observed under space and Mars-like conditions. In this context, the Moon will be an additional platform for performing similar experiments with negligible magnetic shielding and higher solar and galactic irradiation compared to LEO. Using the Moon as an additional astrobiological exposure platform to complement ongoing astrobiological LEO investigations could thus enhance the chances of detecting organic traces of life on Mars. We present a lunar lander mission with two related objectives: a lunar lander equipped with Raman and PanCam instruments which can analyze the lunar surface and survey an astrobiological exposure platform. This dual use of testing mission technology together with geo- and astrobiological analyses will significantly increase the science return, and support the human preparation objectives. It will provide knowledge about the Moon's surface itself and, in addition, monitor the stability of life-markers, such as cells, cell components and pigments, in an extraterrestrial environment with much closer radiation properties to the surface of Mars. The combination of a Raman data base of these data together with data from LEO and space simulation experiments, will lead to further progress on the analysis and interpretation of data that we will obtain from future Moon and Mars exploration missions. KW - Moon KW - Mars KW - Low Earth Orbit KW - Astrobiology KW - Instrumentation KW - Spectroscopy KW - Biosignature Y1 - 2012 U6 - https://doi.org/10.1016/j.pss.2012.06.010 SN - 0032-0633 VL - 74 IS - 1 SP - 103 EP - 110 PB - Elsevier CY - Oxford ER -