TY - JOUR A1 - Zang, Arno A1 - Stephansson, Ove A1 - Stenberg, Leif A1 - Plenkers, Katrin A1 - von Specht, Sebastian A1 - Milkereit, Claus A1 - Schill, Eva A1 - Kwiatek, Grzegorz A1 - Dresen, Georg A1 - Zimmermann, Günter A1 - Dahm, Torsten A1 - Weber, Michael T1 - Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array JF - Geophysical journal international N2 - In this paper, an underground experiment at the Aspo Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Aspo HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Avro granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization. KW - Geomechanics KW - Fracture and flow KW - Broad-band seismometers Y1 - 2016 SN - 0956-540X SN - 1365-246X VL - 208 SP - 790 EP - 813 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Farkas, Márton Pál A1 - Yoon, Jeoung Seok A1 - Zang, Arno A1 - Zimmermann, Günter A1 - Stephansson, Ove A1 - Lemon, Michael A1 - Danko, Gyula T1 - Effect of foliation and fluid viscosity on hydraulic fracturing tests in mica schists investigated using distinct element modeling and field data JF - Rock Mechanics and Rock Engineering N2 - Several hydraulic fracturing tests were performed in boreholes located in central Hungary in order to determine the in-situ stress for a geological site investigation. At a depth of about 540m, the observed pressure versus time curves in mica schist with low dip angle foliation shows atypical pressure versus time results. After each pressurization cycle, the fracture breakdown pressure in the first fracturing cycle is lower than the refracturing or reopening pressure in the subsequent pressurizations. It is assumed that the viscosity of the drilling mud and observed foliation of the mica schist have a significant influence on the pressure values. In order to study this problem, numerical modeling was performed using the distinct element code particle flow code, which has been proven to be a valuable tool to investigate rock engineering problems such as hydraulic fracturing. The two-dimensional version of the code applied in this study can simulate hydro-mechanically coupled fluid flow in crystalline rock with low porosity and pre-existing fractures. In this study, the effect of foliation angle and fluid viscosity on the peak pressure is tested. The atypical characteristics of the pressure behaviour are interpreted so that mud with higher viscosity penetrates the sub-horizontal foliation plane, blocks the plane of weakness and makes the partly opened fracture tight and increase the pore pressure which decreases slowly with time. We see this viscous blocking effect as one explanation for the observed increase in fracture reopening pressure in subsequent pressurization cycles. KW - Hydraulic fracturing KW - Stress measurement KW - Particle flow code KW - Hydro-mechanical coupling KW - Microcrack KW - Viscous blocking Y1 - 2019 U6 - https://doi.org/10.1007/s00603-018-1598-7 SN - 0723-2632 SN - 1434-453X VL - 52 IS - 2 SP - 555 EP - 574 PB - Springer CY - Wien ER - TY - JOUR A1 - Hofmann, Hannes A1 - Zimmermann, Günter A1 - Farkas, Márton Pál A1 - Huenges, Ernst A1 - Zang, Arno A1 - Leonhardt, Maria A1 - Kwiatek, Grzegorz A1 - Martinez-Garzon, Patricia A1 - Bohnhoff, Marco A1 - Min, Ki-Bok A1 - Fokker, Peter A1 - Westaway, Rob A1 - Bethmann, Falko A1 - Meier, Peter A1 - Yoon, Kern Shin A1 - Choi, JaiWon A1 - Lee, Tae Jong A1 - Kim, Kwang Yeom T1 - First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea JF - Geophysical journal international N2 - Large-magnitude fluid-injection induced seismic events are a potential risk for geothermal energy developments worldwide. One potential risk mitigation measure is the application of cyclic injection schemes. After validation at small (laboratory) and meso (mine) scale, the concept has now been applied for the first time at field scale at the Pohang Enhanced Geothermal System (EGS) site in Korea. From 7 August until 14 August 2017 a total of 1756 m(3) of surface water was injected into Pohang well PX-1 at flow rates between 1 and 10 l s(-1), with a maximum wellhead pressure (WHP) of 22.8 MPa, according to a site-specific cyclic soft stimulation schedule and traffic light system. A total of 52 induced microearthquakes were detected in real-time during and shortly after the injection, the largest of M-w 1.9. After that event a total of 1771 m(3) of water was produced back from the well over roughly 1 month, during which time no larger-magnitude seismic event was observed. The hydraulic data set exhibits pressure-dependent injectivity increase with fracture opening between 15 and 17 MPa WHP, but no significant permanent transmissivity increase was observed. The maximum magnitude of the induced seismicity during the stimulation period was below the target threshold of M-w 2.0 and additional knowledge about the stimulated reservoir was gained. Additionally, the technical feasibility of cyclic injection at field scale was evaluated. The major factors that limited the maximum earthquake magnitude are believed to be: limiting the injected net fluid volume, flowback after the occurrence of the largest induced seismic event, using a cyclic injection scheme, the application of a traffic light system, and including a priori information from previous investigations and operations in the treatment design. KW - Cyclic soft stimulation (CSS) KW - induced seismicity KW - risk mitigation KW - enhanced geothermal systems (EGS) KW - granite KW - Pohang (Korea) Y1 - 2019 U6 - https://doi.org/10.1093/gji/ggz058 SN - 0956-540X SN - 1365-246X VL - 217 IS - 2 SP - 926 EP - 949 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bloecher, Mando Guido A1 - Cacace, Mauro A1 - Lewerenz, Bjoern A1 - Zimmermann, Günter T1 - Three dimensional modelling of fractured and faulted reservoirs : framework and implementation N2 - Modelling of coupled physical processes in fractured and faulted media is a major challenge for the geoscience community. Due to the complexity related to the geometry of real fracture networks and fault systems, modelling studies have been mainly restricted either to two dimensional cases or to simplified orthogonal fracture systems consisting of vertical and horizontal fractures. An approach to generate three dimensional meshes for realistic fault geometries is presented. The method enables representation of faults in an arbitrary incline as two dimensional planes within a three dimensional, stratified porous matrix of a generic geometry. Based on a structural geological model, the method creates three dimensional unstructured tetrahedral meshes. These meshes can be used for finite element and finite volume numerical simulations. A simulation of a coupled fluid flow and heat transport problem for a two layered porous medium cut by two crossing faults is presented to test the reliability of the method. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00092819 U6 - https://doi.org/10.1016/j.chemer.2010.05.014 SN - 0009-2819 ER -