TY - JOUR A1 - Kaboth-Bahr, Stefanie A1 - Bahr, André A1 - Zeeden, Christian A1 - Yamoah, Kweku A. A1 - Lone, Mahjoor Ahmad A1 - Chuang, Chih-Kai A1 - Löwemark, Ludvig A1 - Wei, Kuo-Yen T1 - A tale of shifting relations BT - East Asian summer and winter monsoon variability during the Holocene JF - Scientific Reports N2 - Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Niño-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality. KW - Environmental sciences KW - Ocean sciences KW - Solid Earth sciences Y1 - 2020 U6 - https://doi.org/10.1038/s41598-021-85444-7 SN - 2045-2322 VL - 11 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - GEN A1 - Kaboth-Bahr, Stefanie A1 - Bahr, André A1 - Zeeden, Christian A1 - Yamoah, Kweku A. A1 - Lone, Mahjoor Ahmad A1 - Chuang, Chih-Kai A1 - Löwemark, Ludvig A1 - Wei, Kuo-Yen T1 - A tale of shifting relations BT - East Asian summer and winter monsoon variability during the Holocene T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Niño-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1145 KW - Environmental sciences KW - Ocean sciences KW - Solid Earth sciences Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515735 SN - 1866-8372 ER - TY - JOUR A1 - Zeeden, Christian A1 - Obreht, Igor A1 - Veres, Daniel A1 - Kaboth-Bahr, Stefanie A1 - Hošek, Jan A1 - Marković, Slobodan B. A1 - Bösken, Janina A1 - Lehmkuhl, Frank A1 - Rolf, Christian A1 - Hambach, Ulrich T1 - Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets: Application to European loess records JF - Scientific Reports N2 - Millennial-scale palaeoclimate variability has been documented in various terrestrial and marine palaeoclimate proxy records throughout the Northern Hemisphere for the last glacial cycle. Its clear expression and rapid shifts between different states of climate (Greenland Interstadials and Stadials) represents a correlation tool beyond the resolution of e.g. luminescence dating, especially relevant for terrestrial deposits. Usually, comparison of terrestrial proxy datasets and the Greenland ice cores indicates a complex expression of millennial-scale climate variability as recorded in terrestrial geoarchives including loess. Loess is the most widespread terrestrial geoarchive of the Quaternary and especially widespread over Eurasia. However, loess often records a smoothed representation of millennial-scale variability without all fidelity when compared to the Greenland data, this being a relevant limiting feature in integrating loess with other palaeoclimate records. To better understand the loess proxy-response to millennial-scale climate variability, we simulate a proxy signal smoothing by natural processes through application of low-pass filters of delta O-18 data from Greenland, a high-resolution palaeoclimate reference record, alongside speleothem isotope records from the Black Sea-Mediterranean region. We show that low-pass filters represent rather simple models for better constraining the expression of millennial-scale climate variability in low sedimentation environments, and in sediments where proxy-response signals are most likely affected by natural smoothing (by e.g. bioturbation). Interestingly, smoothed datasets from Greenland and the Black Sea-Mediterranean region are most similar in the last similar to 15 ka and between similar to 50-30 ka. Between similar to 30-15 ka, roughly corresponding to the Last Glacial Maximum and the deglaciation, the records show dissimilarities, challenging the construction of robust correlative time-scales in this age range. From our analysis it becomes apparent that patterns of palaeoclimate signals in loess-palaeosol sequences often might be better explained by smoothed Greenland reference data than the original high-resolution Greenland dataset, or other reference data. This opens the possibility to better assess the temporal resolution and palaeoclimate potential of loess-palaeosol sequences in recording supra-regional climate patterns, as well as to securely integrate loess with other chronologically better-resolved palaeoclimate records. KW - last glacial period KW - Western Interior Basin KW - high-resolution record KW - Greenland ice cores KW - paleosol sequence KW - time-scale KW - Chinese loess KW - astronomical calibration KW - chronology (AICC2012) KW - Antarctic ice Y1 - 2020 VL - 10 IS - 1 PB - Springer Nature CY - Berlin ER - TY - GEN A1 - Zeeden, Christian A1 - Obreht, Igor A1 - Veres, Daniel A1 - Kaboth-Bahr, Stefanie A1 - Hošek, Jan A1 - Marković, Slobodan B. A1 - Bösken, Janina A1 - Lehmkuhl, Frank A1 - Rolf, Christian A1 - Hambach, Ulrich T1 - Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets: Application to European loess records T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Millennial-scale palaeoclimate variability has been documented in various terrestrial and marine palaeoclimate proxy records throughout the Northern Hemisphere for the last glacial cycle. Its clear expression and rapid shifts between different states of climate (Greenland Interstadials and Stadials) represents a correlation tool beyond the resolution of e.g. luminescence dating, especially relevant for terrestrial deposits. Usually, comparison of terrestrial proxy datasets and the Greenland ice cores indicates a complex expression of millennial-scale climate variability as recorded in terrestrial geoarchives including loess. Loess is the most widespread terrestrial geoarchive of the Quaternary and especially widespread over Eurasia. However, loess often records a smoothed representation of millennial-scale variability without all fidelity when compared to the Greenland data, this being a relevant limiting feature in integrating loess with other palaeoclimate records. To better understand the loess proxy-response to millennial-scale climate variability, we simulate a proxy signal smoothing by natural processes through application of low-pass filters of delta O-18 data from Greenland, a high-resolution palaeoclimate reference record, alongside speleothem isotope records from the Black Sea-Mediterranean region. We show that low-pass filters represent rather simple models for better constraining the expression of millennial-scale climate variability in low sedimentation environments, and in sediments where proxy-response signals are most likely affected by natural smoothing (by e.g. bioturbation). Interestingly, smoothed datasets from Greenland and the Black Sea-Mediterranean region are most similar in the last similar to 15 ka and between similar to 50-30 ka. Between similar to 30-15 ka, roughly corresponding to the Last Glacial Maximum and the deglaciation, the records show dissimilarities, challenging the construction of robust correlative time-scales in this age range. From our analysis it becomes apparent that patterns of palaeoclimate signals in loess-palaeosol sequences often might be better explained by smoothed Greenland reference data than the original high-resolution Greenland dataset, or other reference data. This opens the possibility to better assess the temporal resolution and palaeoclimate potential of loess-palaeosol sequences in recording supra-regional climate patterns, as well as to securely integrate loess with other chronologically better-resolved palaeoclimate records. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1187 KW - last glacial period KW - Western Interior Basin KW - high-resolution record KW - Greenland ice cores KW - paleosol sequence KW - time-scale KW - Chinese loess KW - astronomical calibration KW - chronology (AICC2012) KW - Antarctic ice Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524271 SN - 1866-8372 IS - 1 ER -