TY - JOUR A1 - Tiseanu, Carmen A1 - Frunza, L. A1 - Kumke, Michael Uwe T1 - Time-resolved photoluminescence analysis of distribution and migration of terbium ions in zeolites X N2 - The photoluminescence (PL) dynamics of terbium-exchanged zeolites X was investigated upon laser excitation at 355 nm. The results evidenced the presence of at least two terbium main environments with PL lifetimes varying between 391-411 and 753-770 mus. The two-site nature of terbium distribution in zeolites X permitted a quantitative analysis of the migration process of terbium ions inside the pores and cavities upon dehydration in air at 200 degreesC. Besides the increase of the PL lifetimes with about 30% and 80% compared to those of the hydrated zeolite, a fraction of almost 30% of terbium ions was estimated to migrate from the supercages to the neighboring sodalites or hexagonal prisms. Our results evidenced for the first time the capability of time-resolved luminescence spectroscopy in quantitatively tracking for the intrazeolitic migration of lanthanides. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Parvulescu, Vasile I. A1 - Boutonnet, Magali A1 - Cojocaru, Bogdan A1 - Primus, Philipp A. A1 - Teodorescu, Cristian M. A1 - Solans, Conchita A1 - Sanchez Dominguez, Margarita T1 - Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Pure and europium (Eu3+) doped cerium dioxide (CeO2) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of similar to 250 m(2) g(-1). Only a small fraction of the europium ions substitutes for the bulk, cubic Ce4+ sites in the europium-doped ceria nanocrystals. Upon calcination up to 1000 degrees C, a remarkable high surface area of similar to 120 m(2) g (-1) is preserved whereas an enrichment of the surface Ce4+ relative to Ce3+ ions and relative strong europium emission with a lifetime of similar to 1.8 ms and FWHM as narrow as 10 cm(-1) are measured. Under excitation into the UV and visible spectral range, the europium doped ceria nanocrystals display a variable emission spanning the orange-red wavelengths. The tunable emission is explained by the heterogeneous distribution of the europium dopants within the ceria nanocrystals coupled with the progressive diffusion of the europium ions from the surface to the inner ceria sites and the selective participation of the ceria host to the emission sensitization. Effects of the bulk-doping and impregnation with europium on the ceria host structure and optical properties are also discussed. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp21135h SN - 1463-9076 VL - 13 IS - 38 SP - 17135 EP - 17145 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Parvulescu, Vasile A1 - Parvulescu, Victoria A1 - Cotoi, Elena A1 - Gessner, Andre A1 - Kumke, Michael Uwe A1 - Simon, Simion A1 - Vasiliu, Florin T1 - Structural and photoluminescence characterization of mesoporous silicon-phosphates N2 - Two different types of mesoporous silicon-phosphate supports using different surfactants (a mixture of (CH3)(3)C13H27NBr with an organophosphorus coupling molecule (HO-PO(i-C3H7)(2)) and with a co-surfactant ((C2H5)(3)(C6H5)PCl), respectively) were synthesized. Trivalent europium (Eu) ions were immobilized via ion-exchange on these supports. The resulting materials were characterized using nitrogen adsorption isotherms at -196 degrees C, thermogravimetric analysis, SEM, TEM, FT-IR, PXRD, CP/MAS. (HSi)-H-1-Si-29 and P-31 NMR, DR-UV-vis as well as steady- state and time-resolved photoluminescence spectroscopy. The results evidenced that the co-polymerization of silicon and phosphorous yielded a unique morphology in these materials. Following calcination at 450 and 900 degrees C europium- exchanged silicon-phosphates with great surface area (BET=600-705 m(2) g(-1)) and 3.4 nm sized mesopores were obtained. The differences among the optical properties of the non-calcined europium materials such as the emission lifetimes, local environment at the europium sites or the relative contribution of the upper excited levels to the total photoluminescence were assigned to the surfactants used in the synthesis. Calcination of the silicon-phosphates at higher temperatures than 450 degrees C did not induce major changes in the structural properties: in contrast, photoluminescence properties of europium were markedly improved in terms of intensity and average lifetime. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/10106030 U6 - https://doi.org/10.1016/j.jphotochem.2010.07.015 SN - 1010-6030 ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Kumke, Michael Uwe A1 - Pârvulescu, Vasile Ion A1 - Martens, Johan T1 - Species-related luminescence-structure relationships in europium-exchanged mesoporous material N2 - Europium exchanged into a mesoporous material (Zeotile-1) was extensively characterized with respect to the Si/ Al ratio and surface silylation by using time-resolved emission spectroscopy. Qualitative as well as quantitative details of the europium species-related luminescence-structure relationships were obtained and discussed such as the decay associated spectra, local distortion and structure of the bonding environment, crystal-field strength, radiative relaxation rates, and the quantum efficiency. Thus, two europium species were found in the parent as well as in the silylated materials: one species located on the internal surface and the second inside the 2-2.5 nm pores. The species located on the internal surface is characterized by photoluminescence decay times of 105 mu s Eu3+-APTMS/SiO2 (425 mu s) > Eu3+-APTMS/MCM-41 (370 mu s) > Eu3+-IPTES/MCM-41 (320 mu s) > Eu3+-CABES/SiO2 (240 mu s). The photoluminescence quantum efficiency has the largest value, of 22%, for Eu3+-IPTES/SiO2, while the most reduced value, of 9%, was measured for Eu3+-CABES/SiO2. Y1 - 2009 UR - http://pubs.acs.org/journal/jpccck U6 - https://doi.org/10.1021/Jp808411e SN - 1932-7447 ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Geßner, Andre A1 - Kumke, Michael Uwe A1 - Parvulescu, V. T1 - Dehydration and rehydration effects on the photoluminescence properties of terbium-exchanged MFI type materials Y1 - 2008 U6 - https://doi.org/10.1016/j.jnoncrysol.2007.11.017 ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Lorenz-Fonfria, Victor A. A1 - Geßner, André A1 - Kumke, Michael Uwe A1 - Gagea, Bogdan T1 - Comparative luminescence study of terbium-exchanged zeolites silylated with alkoxysilanes N2 - Terbium-exchanged ZSM-5, MOR and (H)BEA zeolites were silylated with phenyl-, vinyl- and hexadecyl trimethoxysilanes via a post-synthesis grafting. All samples were investigated by means of PXRD, FT-IR, TGA, physical adsorption, DR-UV-Vis and time-resolved photoluminescence spectroscopy. From the comparison of the photoluminescence decays of terbium-exchanged in parent (non-silylated) and silylated zeolites, it resulted that the silylation efficiency of the various alkoxysilanes is determined by the type of zeolite and follows the sequences: phenyl > vinyl > hexadecyl > parent for ZSM-5, hexadecyl a parts per thousand phenyl a parts per thousand vinyl > parent for MOR and hexadecyl > phenyl a parts per thousand vinyl > a parts per thousand parent for BEA zeolites, respectively. Y1 - 2009 UR - http://www.springerlink.com/content/100190 U6 - https://doi.org/10.1007/s10854-008-9597-1 SN - 0957-4522 ER -