TY - JOUR A1 - Xu, Xun A1 - Nie, Yan A1 - Wang, Weiwei A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells JF - MRS communications / a publication of the Materials Research Society N2 - Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. KW - Actuation KW - Antiviral KW - Biomaterial KW - COVID-19 KW - Shape memory Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00049-5 SN - 2159-6859 SN - 2159-6867 VL - 11 IS - 4 SP - 425 EP - 431 PB - Springer CY - Berlin ER - TY - JOUR A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xu, Xun A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polydopamine-based biofunctional substrate coating promotes mesenchymal stem cell migration JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - Rapid migration of mesenchymal stem cells (MSCs) on device surfaces could support in vivo tissue integration and might facilitate in vitro organoid formation. Here, polydopamine (PDA) is explored as a biofunctional coating to effectively promote MSC motility. It is hypothesized that PDA stimulates fibronectin deposition and in this way enhances integrin-mediated migration capability. The random and directional cell migration was investigated by time-lapse microscopy and gap closure assay respectively, and analysed with softwares as computational tools. A higher amount of deposited fibronectin was observed on PDA substrate, compared to the non-coated substrate. The integrin beta 1 activation and focal adhesion kinase (FAK) phosphorylation at Y397 were enhanced on PDA substrate, but the F-actin cytoskeleton was not altered, suggesting MSC migration on PDA was regulated by integrin initiated FAK signalling. This study strengthens the biofunctionality of PDA coating for regulating stem cells and offering a way of facilitating tissue integration of devices. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00091-4 SN - 2059-8521 VL - 6 IS - 31 SP - 739 EP - 744 PB - Springer Nature Switzerland AG CY - Cham ER - TY - GEN A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xua, Xun A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polymeric sheet actuators with programmable bioinstructivity T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1441 KW - reversible shape-memory actuator KW - mesenchymal stem cells KW - calcium influx KW - HDAC1 KW - RUNX2 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515490 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xua, Xun A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Polymeric sheet actuators with programmable bioinstructivity JF - PNAS N2 - Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects. KW - reversible shape-memory actuator KW - mesenchymal stem cells KW - calcium influx KW - HDAC1 KW - RUNX2 Y1 - 2020 U6 - https://doi.org/10.1073/pnas.1910668117 SN - 1091-6490 VL - 117 IS - 4 SP - 1895 EP - 1901 PB - National Academy of Sciences CY - Washington, DC ER - TY - JOUR A1 - Deng, Zijun A1 - Wang, Weiwei A1 - Xu, Xun A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulation of mesenchymal stem cell migration using programmable polymer sheet actuators JF - MRS advances N2 - Recruitment of mesenchymal stem cells (MSCs) to damaged tissue is a crucial step to modulate tissue regeneration. Here, the migration of human adipose-derived stem cells (hADSCs) responding to thermal and mechanical stimuli was investigated using programmable shape-memory polymer actuator (SMPA) sheets. Changing the temperature repetitively between 10 and 37 degrees C, the SMPA sheets are capable of reversibly changing between two different pre-defined shapes like an artificial muscle. Compared to non-actuating sheets, the cells cultured on the programmed actuating sheets presented a higher migration velocity (0.32 +/- 0.1 vs. 0.57 +/- 0.2 mu m/min). These results could motivate the next scientific steps, for example, to investigate the MSCs pre-loaded in organoids towards their migration potential. Y1 - 2020 U6 - https://doi.org/10.1557/adv.2020.235 SN - 2059-8521 VL - 5 IS - 46-47 SP - 2381 EP - 2390 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Zou, Jie A1 - Wang, Weiwei A1 - Neffe, Axel T. A1 - Xu, Xun A1 - Li, Zhengdong A1 - Deng, Zijun A1 - Sun, Xianlei A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel) JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Polymeric matrices mimicking multiple functions of the ECM are expected to enable a material induced regeneration of tissues. Here, we investigated the adipogenic differentiation of human adipose derived mesenchymal stem cells (hADSCs) in a 3D architectured gelatin based hydrogel (ArcGel) prepared from gelatin and L-lysine diisocyanate ethyl ester (LDI) in an one-step process, in which the formation of an open porous morphology and the chemical network formation were integrated. The ArcGel was designed to support adipose tissue regeneration with its 3D porous structure, high cell biocompatibility, and mechanical properties compatible with human subcutaneous adipose tissue. The ArcGel could support initial cell adhesion and survival of hADSCs. Under static culture condition, the cells could migrate into the inner part of the scaffold with a depth of 840 +/- 120 mu m after 4 days, and distributed in the whole scaffold (2mm in thickness) within 14 days. The cells proliferated in the scaffold and the fold increase of cell number after 7 days of culture was 2.55 +/- 0.08. The apoptotic rate of hADSCs in the scaffold was similar to that of cells maintained on tissue culture plates. When cultured in adipogenic induction medium, the hADSCs in the scaffold differentiated into adipocytes with a high efficiency (93 +/- 1%). Conclusively, this gelatin based 3D scaffold presented high cell compatibility for hADSC cultivation and differentiation, which could serve as a potential implant material in clinical applications for adipose tissue reparation and regeneration. KW - Mesenchymal stem cells KW - gelatin based scaffold KW - adipose tissue regeneration KW - adipogenic differentiation Y1 - 2017 U6 - https://doi.org/10.3233/CH-179210 SN - 1386-0291 SN - 1875-8622 VL - 67 IS - 3-4 SP - 297 EP - 307 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Li, Zhengdong A1 - Xu, Xun A1 - Wang, Weiwei A1 - Kratz, Karl A1 - Sun, Xianlei A1 - Zou, Jie A1 - Deng, Zijun A1 - Jung, Friedrich Wilhelm A1 - Gossen, Manfred A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulation of the mesenchymal stem cell migration capacity via preconditioning with topographic microstructure JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Controlling mesenchymal stem cells (MSCs) behavior is necessary to fully exploit their therapeutic potential. Various approaches are employed to effectively influence the migration capacity of MSCs. Here, topographic microstructures with different microscale roughness were created on polystyrene (PS) culture vessel surfaces as a feasible physical preconditioning strategy to modulate MSC migration. By analyzing trajectories of cells migrating after reseeding, we demonstrated that the mobilization velocity of human adipose derived mesenchymal stem cells (hADSCs) could be promoted by and persisted after brief preconditioning with the appropriate microtopography. Moreover, the elevated activation levels of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) in hADSCs were also observed during and after the preconditioning process. These findings underline the potential enhancement of in vivo therapeutic efficacy in regenerative medicine via transplantation of topographic microstructure preconditioned stem cells. KW - Mesenchymal stem cells KW - precondition KW - microstructure KW - migration KW - FAK-MAPK Y1 - 2017 U6 - https://doi.org/10.3233/CH-179208 SN - 1386-0291 SN - 1875-8622 VL - 67 SP - 267 EP - 278 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Gerecke, Christian A1 - Edlich, Alexander A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Zhang, Nan A1 - Said, Andre A1 - Yealland, Guy A1 - Lohan, Silke B. A1 - Neumann, Falko A1 - Meinke, Martina C. A1 - Ma, Nan A1 - Calderon, Marcelo A1 - Hedtrich, Sarah A1 - Schaefer-Korting, Monika A1 - Kleuser, Burkhard T1 - Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes JF - Nanotoxicology N2 - Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery. KW - Drug delivery KW - nanoparticles KW - particle characterization KW - keratinocytes KW - nanotoxicology Y1 - 2017 U6 - https://doi.org/10.1080/17435390.2017.1292371 SN - 1743-5390 SN - 1743-5404 VL - 11 SP - 267 EP - 277 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Radbruch, Moritz A1 - Pischon, Hannah A1 - Ostrowski, Anja A1 - Volz, Pierre A1 - Brodwolf, Robert A1 - Neumann, Falko A1 - Unbehauen, Michael A1 - Kleuser, Burkhard A1 - Haag, Rainer A1 - Ma, Nan A1 - Alexiev, Ulrike A1 - Mundhenk, Lars A1 - Gruber, Achim D. T1 - Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin JF - Nanoscale Research Letters N2 - Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin. KW - CMS KW - Skin KW - Topical treatment KW - Dermal delivery KW - Atopic dermatitis KW - Oxazolone KW - Fluorescence lifetime imaging microscopy KW - Nanomaterials KW - Multi-domain nanoparticles KW - Penetration enhancement Y1 - 2017 U6 - https://doi.org/10.1186/s11671-017-1835-0 SN - 1556-276X VL - 12 IS - 64 PB - Springer CY - New York ER - TY - JOUR A1 - Edlich, Alexander A1 - Gerecke, Christian A1 - Giulbudagian, Michael A1 - Neumann, Falko A1 - Hedtrich, Sarah A1 - Schaefer-Korting, Monika A1 - Ma, Nan A1 - Calderon, Marcelo A1 - Kleuser, Burkhard T1 - Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin JF - European Journal of Pharmaceutics and Biopharmaceutics N2 - Engineered nanogels are of high value for a targeted and controlled transport of compounds due to the ability to change their chemical properties by external stimuli. As it has been indicated that nanogels possess a high ability to penetrate the stratum corneum, it cannot be excluded that nanogels interact with dermal dendritic cells, especially in diseased skin. In this study the potential crosstalk of the thermore-sponsive nanogels (tNGs) with the dendritic cells of the skin was investigated with the aim to determine the immunotoxicological properties of the nanogels. The investigated tNGs were made of dendritic polyglycerol (dPG) and poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)), as polymer conferring thermoresponsive properties. Although the tNGs were taken up, they displayed neither cytotoxic and genotoxic effects nor any induction of reactive oxygen species in the tested cells. Interestingly, specific uptake mechanisms of the tNGs by the dendritic cells were depending on the nanogels cloud point temperature (Tcp), which determines the phase transition of the nanoparticle. The study points to caveolae-mediated endocytosis as being the major tNGs uptake mechanism at 37 degrees C, which is above the Tcp of the tNGs. Remarkably, an additional uptake mechanism, beside caveolae-mediated endocytosis, was observed at 29 degrees C, which is the Tcp of the tNGs. At this temperature, which is characterized by two different states of the tNGs, macropinocytosis was involved as well. In summary, our study highlights the impact of thermoresponsivity on the cellular uptake mechanisms which has to be taken into account if the tNGs are used as a drug delivery system. KW - Dendritic cells KW - Drug delivery systems KW - Nanogel KW - Nanoparticle KW - Nanoparticle uptake KW - Nanotoxicology Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2016.12.016 SN - 0939-6411 SN - 1873-3441 VL - 116 SP - 155 EP - 163 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nie, Yan A1 - Wang, Weiwei A1 - Xu, Xun A1 - Zou, Jie A1 - Bhuvanesh, Thanga A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs. KW - Polymeric substrate KW - surface coating KW - induced pluripotent stem cells KW - cell adhesion Y1 - 2019 U6 - https://doi.org/10.3233/CH-189318 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 531 EP - 542 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Wang, Weiwei A1 - Xu, Xun A1 - Li, Zhengdong A1 - Kratz, Karl A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Non-swelling hydrophobic poly(n-butyl acrylate) network (cPnBA) is a candidate material for synthetic vascular grafts owing to its low toxicity and tailorable mechanical properties. Mesenchymal stem cells (MSCs) are an attractive cell type for accelerating endothelialization because of their superior anti-thrombosis and immune modulatory function. Further, they can differentiate into smooth muscle cells or endothelial-like cells and secret pro-angiogenic factors such as vascular endothelial growth factor (VEGF). MSCs are sensitive to the substrate mechanical properties, with the alteration of their major cellular behavior and functions as a response to substrate elasticity. Here, we cultured human adipose-derived mesenchymal stem cells (hADSCs) on cPnBAs with different mechanical properties (cPnBA250, Young’s modulus (E) = 250 kPa; cPnBA1100, E = 1100 kPa) matching the elasticity of native arteries, and investigated their cellular response to the materials including cell attachment, proliferation, viability, apoptosis, senescence and secretion. The cPnBA allowed high cell attachment and showed negligible cytotoxicity. F-actin assembly of hADSCs decreased on cPnBA films compared to classical tissue culture plate. The difference of cPnBA elasticity did not show dramatic effects on cell attachment, morphology, cytoskeleton assembly, apoptosis and senescence. Cells on cPnBA250, with lower proliferation rate, had significantly higher VEGF secretion activity. These results demonstrated that tuning polymer elasticity to regulate human stem cells might be a potential strategy for constructing stem cell-based artificial blood vessels. KW - Poly(n-butyl acrylate) KW - mechanical property KW - vascular graft KW - mesenchymal stem cells KW - VEGF Y1 - 2019 U6 - https://doi.org/10.3233/CH-189418 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 2 SP - 277 EP - 289 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Deng, Zijun A1 - Zou, Jie A1 - Wang, Weiwei A1 - Nie, Yan A1 - Tung, Wing-Tai A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Dedifferentiation of mature adipocytes with periodic exposure to cold JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10 degrees C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37 degrees C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1 alpha, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37 degrees C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells. KW - Adipocyte KW - dedifferentiation KW - cold KW - lipid Y1 - 2019 U6 - https://doi.org/10.3233/CH-199005 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 415 EP - 424 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Hausmann, Christian A1 - Zoschke, Christian A1 - Wolff, Christopher A1 - Darvin, Maxim E. A1 - Sochorova, Michaela A1 - Kovacik, Andrej A1 - Wanjiku, Barbara A1 - Schumacher, Fabian A1 - Tigges, Julia A1 - Kleuser, Burkhard A1 - Lademann, Juergen A1 - Fritsche, Ellen A1 - Vavrova, Katerina A1 - Ma, Nan A1 - Schaefer-Korting, Monika T1 - Fibroblast origin shapes tissue homeostasis, epidermal differentiation, and drug uptake JF - Scientific reports N2 - Preclinical studies frequently lack predictive value for human conditions. Human cell-based disease models that reflect patient heterogeneity may reduce the high failure rates of preclinical research. Herein, we investigated the impact of primary cell age and body region on skin homeostasis, epidermal differentiation, and drug uptake. Fibroblasts derived from the breast skin of female 20- to 30-yearolds or 60- to 70-year-olds and fibroblasts from juvenile foreskin (<10 years old) were compared in cell monolayers and in reconstructed human skin (RHS). RHS containing aged fibroblasts differed from its juvenile and adult counterparts, especially in terms of the dermal extracellular matrix composition and interleukin-6 levels. The site from which the fibroblasts were derived appeared to alter fibroblast-keratinocyte crosstalk by affecting, among other things, the levels of granulocyte-macrophage colony-stimulating factor. Consequently, the epidermal expression of filaggrin and e-cadherin was increased in RHS containing breast skin fibroblasts, as were lipid levels in the stratum corneum. In conclusion, the region of the body from which fibroblasts are derived appears to affect the epidermal differentiation of RHS, while the age of the fibroblast donors determines the expression of proteins involved in wound healing. Emulating patient heterogeneity in preclinical studies might improve the treatment of age-related skin conditions. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-39770-6 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Bhuvanesh, Thanga A1 - Machatschek, Rainhard Gabriel A1 - Lysyakova, Liudmila A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Collagen type-IV Langmuir and Langmuir-Schafer layers as model biointerfaces to direct stem cell adhesion JF - Biomedical materials : materials for tissue engineering and regenerative medicine N2 - In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schafer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m(-1). Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m(-1) onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m(-1) on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses. KW - collagen-IV KW - basement membrane KW - Langmuir-Schafer films KW - stem cell adhesion KW - protein KW - ellipsometry Y1 - 2019 U6 - https://doi.org/10.1088/1748-605X/aaf464 SN - 1748-6041 SN - 1748-605X VL - 14 IS - 2 PB - Inst. of Physics Publ. CY - Bristol ER - TY - JOUR A1 - Bhuvanesh, Thanga A1 - Saretia, Shivam A1 - Roch, Toralf A1 - Schöne, Anne-Christin A1 - Rottke, Falko O. A1 - Kratz, Karl A1 - Wang, Weiwei A1 - Ma, Nan A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Langmuir-Schaefer films of fibronectin as designed biointerfaces for culturing stem cells JF - Polymers for advanced technologies N2 - Glycoproteins adsorbing on an implant upon contact with body fluids can affect the biological response in vitro and in vivo, depending on the type and conformation of the adsorbed biomacromolecules. However, this process is poorly characterized and so far not controllable. Here, protein monolayers of high molecular cohesion with defined density are transferred onto polymeric substrates by the Langmuir-Schaefer (LS) technique and were compared with solution deposition (SO) method. It is hypothesized that on polydimethylsiloxane (PDMS), a substrate with poor cell adhesion capacity, the fibronectin (FN) layers generated by the LS and SO methods will differ in their organization, subsequently facilitating differential stem cell adhesion behavior. Indeed, atomic force microscopy visualization and immunofluorescence images indicated that organization of the FN layer immobilized on PDMS was uniform and homogeneous. In contrast, FN deposited by SO method was rather heterogeneous with appearance of structures resembling protein aggregates. Human mesenchymal stem cells showed reduced absolute numbers of adherent cells, and the vinculin expression seemed to be higher and more homogenously distributed after seeding on PDMS equipped with FN by LS in comparison with PDMS equipped with FN by SO. These divergent responses could be attributed to differences in the availability of adhesion molecule ligands such as the Arg-Gly-Asp (RGD) peptide sequence presented at the interface. The LS method allows to control the protein layer characteristics, including the thickness and the protein orientation or conformation, which can be harnessed to direct stem cell responses to defined outcomes, including migration and differentiation. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - Langmuir-Schaefer method KW - protein adsorption KW - stem cell adhesion KW - cell culture KW - fibronectin Y1 - 2017 U6 - https://doi.org/10.1002/pat.3910 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1305 EP - 1311 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Li, Mingjun A1 - Gao, Lingyan A1 - Schlaich, Christoph A1 - Zhang, Jianguang A1 - Donskyi, Ievgen S. A1 - Yu, Guozhi A1 - Li, Wenzhong A1 - Tu, Zhaoxu A1 - Rolff, Jens A1 - Schwerdtle, Tanja A1 - Haag, Rainer A1 - Ma, Nan T1 - Construction of Functional Coatings with Durable and Broad-Spectrum Antibacterial Potential Based on Mussel-Inspired Dendritic Polyglycerol and in Situ-Formed Copper Nanoparticles JF - ACS applied materials & interfaces N2 - A novel surface coating with durable broad-spectrum antibacterial ability was prepared based on mussel inspired dendritic polyglycerol (MI-dPG) embedded with copper nanoparticles (Cu NPs). The functional surface coating is fabricated via a facile dip-coating process followed by in situ reduction of copper ions with a MI-dPG coating to introduce Cu NPs into the coating matrix. This coating has been demonstrated to possess efficient long-term antibacterial properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and kanamycin-resistant E. coli through an "attract-kill-release" strategy. The synergistic antibacterial activity of the coating was shown by the combination of two functions of the contact killing, reactive oxygen species production and Cu ions released from the coating. Furthermore, this coating inhibited biofilm formation and showed good compatibility to eukaryotic cells. Thus, this newly developed Cu NP-incorporated MI-dPG surface coating may find potential application in the design of antimicrobial coating, such as implantable devices. KW - Cu NP-incorporated MI-dPG coating KW - universal coating KW - in situ chemical reduction KW - antibacterial effect KW - drug-resistant bacteria Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b10541 SN - 1944-8244 VL - 9 SP - 35411 EP - 35418 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wang, Weiwei A1 - Naolou, Toufik A1 - Ma, Nan A1 - Deng, Zijun A1 - Xu, Xun A1 - Mansfeld, Ulrich A1 - Wischke, Christian A1 - Gossen, Manfred A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an M (n) similar to 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells. Y1 - 2017 U6 - https://doi.org/10.1021/acs.biomac.7b01034 SN - 1525-7797 SN - 1526-4602 VL - 18 SP - 3819 EP - 3833 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Radbruch, Moritz A1 - Pischon, Hannah A1 - Ostrowski, Anja A1 - Volz, Pierre A1 - Brodwolf, Robert A1 - Neumann, Falko A1 - Unbehauen, Michael A1 - Kleuser, Burkhard A1 - Haag, Rainer A1 - Ma, Nan A1 - Alexiev, Ulrike A1 - Mundhenk, Lars A1 - Gruber, Achim D. T1 - Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 724 KW - CMS KW - skin KW - topical treatment KW - dermal delivery KW - atopic dermatitis KW - oxazolone KW - fluorescence lifetime imaging microscopy KW - nanomaterials KW - multi-domain nanoparticles KW - penetration enhancement Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430136 SN - 1866-8372 IS - 724 ER - TY - GEN A1 - Gerecke, Christian A1 - Edlich, Alexander A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Zhang, Nan A1 - Said, Andre A1 - Yealland, Guy A1 - Lohan, Silke B. A1 - Neumann, Falko A1 - Meinke, Martina C. A1 - Ma, Nan A1 - Calderón, Marcelo A1 - Hedtrich, Sarah A1 - Schäfer-Korting, Monika A1 - Kleuser, Burkhard T1 - Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes N2 - Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 335 KW - Drug delivery KW - nanoparticles KW - particle characterization KW - keratinocytes KW - nanotoxicology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395325 ER -