TY - GEN A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Pe'er, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research BT - exploring new avenues to address spatiotemporal biodiversity dynamics N2 - Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of ‘movement ecology’. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide ‘mobile links’ between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through ‘equalizing’ and ‘stabilizing’ mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 401 KW - mobile links KW - species coexistence KW - community dynamics KW - biodiversity conservation KW - long distance movement KW - landscape genetics KW - individual based modeling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401177 ER - TY - JOUR A1 - Pfestorf, H. A1 - Weiss, L. A1 - Müller, J. A1 - Boch, Steffen A1 - Socher, S. A. A1 - Prati, Daniel A1 - Schöning, Ingo A1 - Weisser, W. A1 - Fischer, M. A1 - Jeltsch, Florian T1 - Community mean traits as additional indicators to monitor effects of land-use intensity On grassland plant diversity JF - Perspectives in plant ecology, evolution and systematics N2 - Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German 'Biodiversity Exploratory' research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics. KW - Biodiversity Exploratories KW - Biological conservation KW - (Semi-natural) Grasslands KW - Plant functional traits KW - Indicators KW - Land-use intensity Y1 - 2013 U6 - https://doi.org/10.1016/j.ppees.2012.10.003 SN - 1433-8319 VL - 15 IS - 1 SP - 1 EP - 11 PB - Elsevier CY - Jena ER - TY - JOUR A1 - May, Felix A1 - Giladi, Itamar A1 - Ristow, Michael A1 - Ziv, Yaron A1 - Jeltsch, Florian T1 - Plant functional traits and community assembly along interacting gradients of productivity and fragmentation JF - Perspectives in plant ecology, evolution and systematics N2 - Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes. In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south-north productivity gradient. We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m x 0.25 m). All traits varied significantly along the S-N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S-N gradient. Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass). Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits. KW - Connectivity KW - Drought-stress KW - Habitat filtering KW - Limiting similarity KW - Null models KW - Plant height KW - Seed mass KW - Seed number KW - Specific leaf area (SLA) Y1 - 2013 U6 - https://doi.org/10.1016/j.ppees.2013.08.002 SN - 1433-8319 VL - 15 IS - 6 SP - 304 EP - 318 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Seifan, Merav A1 - Seifan, Tal A1 - Schiffers, Katja A1 - Jeltsch, Florian A1 - Tielboerger, Katja T1 - Beyond the competition-colonization trade-off - linking multiple trait response to disturbance characteristics JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - Disturbances' role in shaping communities is well documented but highly disputed. We suggest replacing the overused two-trait trade-off approach with a functional group scheme, constructed from combinations of four key traits that represent four classes of species' responses to disturbances. Using model results and field observations from sites affected by two highly different disturbances, we demonstrated that popular dichotomous trade-offs are not sufficient to explain community dynamics, even if some emerge under certain conditions. Without disturbances, competition was only sufficient to predict species survival but not relative success, which required some escape mechanism (e.g., long-term dormancy). With highly predictable and large-scale disturbances, successful species showed a combination of high individual tolerance to disturbance and, more surprisingly, high competitive ability. When disturbances were less predictable, high individual tolerance and long-term seed dormancy were favored, due to higher environmental uncertainty. Our study demonstrates that theories relying on a small number of predefined trade-offs among traits (e.g., competition-colonization trade-off) may lead to unrealistic results. We suggest that the understanding of disturbance-community relationships can be significantly improved by employing sets of relevant trait assemblies instead of the currently common approach in which trade-offs are assumed in advance. KW - competition resistance trade-off KW - functional types KW - intermediate disturbance hypothesis KW - plant communities KW - species assemblies Y1 - 2013 U6 - https://doi.org/10.1086/668844 SN - 0003-0147 VL - 181 IS - 2 SP - 151 EP - 160 PB - Univ. of Chicago Press CY - Chicago ER - TY - JOUR A1 - Buchmann, Carsten M. A1 - Schurr, Frank Martin A1 - Nathan, Ran A1 - Jeltsch, Florian T1 - Habitat loss and fragmentation affecting mammal and bird communities-The role of interspecific competition and individual space use JF - Ecological informatics : an international journal on ecoinformatics and computational ecolog N2 - Fragmentation and loss of habitat are major threats to animal communities and are therefore important to conservation. Due to the complexity of the interplay of spatial effects and community processes, our mechanistic understanding of how communities respond to such landscape changes is still poor. Modelling studies have mostly focused on elucidating the principles of community response to fragmentation and habitat loss at relatively large spatial and temporal scales relevant to metacommunity dynamics. Yet, it has been shown that also small scale processes, like foraging behaviour, space use by individuals and local resource competition are also important factors. However, most studies that consider these smaller scales are designed for single species and are characterized by high model complexity. Hence, they are not easily applicable to ecological communities of interacting individuals. To fill this gap, we apply an allometric model of individual home range formation to investigate the effects of habitat loss and fragmentation on mammal and bird communities, and, in this context, to investigate the role of interspecific competition and individual space use. Results show a similar response of both taxa to habitat loss. Community composition is shifted towards higher frequency of relatively small animals. The exponent and the 95%-quantile of the individual size distribution (ISD, described as a power law distribution) of the emerging communities show threshold behaviour with decreasing habitat area. Fragmentation per se has a similar and strong effect on mammals, but not on birds. The ISDs of bird communities were insensitive to fragmentation at the small scales considered here. These patterns can be explained by competitive release taking place in interacting animal communities, with the exception of bird's buffering response to fragmentation, presumably by adjusting the size of their home ranges. These results reflect consequences of higher mobility of birds compared to mammals of the same size and the importance of considering competitive interaction, particularly for mammal communities, in response to landscape fragmentation. Our allometric approach enables scaling up from individual physiology and foraging behaviour to terrestrial communities, and disentangling the role of individual space use and interspecific competition in controlling the response of mammal and bird communities to landscape changes. KW - Allometry KW - Body size KW - Fractal landscapes KW - Foraging movement KW - Individual-based model KW - Locomotion costs Y1 - 2013 U6 - https://doi.org/10.1016/j.ecoinf.2012.11.015 SN - 1574-9541 VL - 14 SP - 90 EP - 98 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jeltsch, Florian A1 - Blaum, Niels A1 - Brose, Ulrich A1 - Chipperfield, Joseph D. A1 - Clough, Yann A1 - Farwig, Nina A1 - Geissler, Katja A1 - Graham, Catherine H. A1 - Grimm, Volker A1 - Hickler, Thomas A1 - Huth, Andreas A1 - May, Felix A1 - Meyer, Katrin M. A1 - Pagel, Jörn A1 - Reineking, Björn A1 - Rillig, Matthias C. A1 - Shea, Katriona A1 - Schurr, Frank Martin A1 - Schroeder, Boris A1 - Tielbörger, Katja A1 - Weiss, Lina A1 - Wiegand, Kerstin A1 - Wiegand, Thorsten A1 - Wirth, Christian A1 - Zurell, Damaris T1 - How can we bring together empiricists and modellers in functional biodiversity research? JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Improving our understanding of biodiversity and ecosystem functioning and our capacity to inform ecosystem management requires an integrated framework for functional biodiversity research (FBR). However, adequate integration among empirical approaches (monitoring and experimental) and modelling has rarely been achieved in FBR. We offer an appraisal of the issues involved and chart a course towards enhanced integration. A major element of this path is the joint orientation towards the continuous refinement of a theoretical framework for FBR that links theory testing and generalization with applied research oriented towards the conservation of biodiversity and ecosystem functioning. We further emphasize existing decision-making frameworks as suitable instruments to practically merge these different aims of FBR and bring them into application. This integrated framework requires joint research planning, and should improve communication and stimulate collaboration between modellers and empiricists, thereby overcoming existing reservations and prejudices. The implementation of this integrative research agenda for FBR requires an adaptation in most national and international funding schemes in order to accommodate such joint teams and their more complex structures and data needs. KW - Biodiversity theory KW - Biodiversity experiments KW - Conservation management KW - Decision-making KW - Ecosystem functions and services KW - Forecasting KW - Functional traits KW - Global change KW - Monitoring programmes KW - Interdisciplinarity Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2013.01.001 SN - 1439-1791 VL - 14 IS - 2 SP - 93 EP - 101 PB - Elsevier CY - Jena ER - TY - CHAP A1 - Sapir, N. A1 - Rotics, S. A1 - Kaatz, M. A1 - Davidson, S. A1 - Zurell, Damaris A1 - Eggers, U. A1 - Jeltsch, Florian A1 - Nathan, R. A1 - Wikelski, M. T1 - Multi-year tracking of white storks (Ciconia ciconia) how the environment shapes the movement and behavior of a soaring-gliding inter-continental migrant T2 - Integrative and comparative biology Y1 - 2013 SN - 1540-7063 VL - 53 IS - 3 SP - E189 EP - E189 PB - Oxford Univ. Press CY - Cary ER - TY - JOUR A1 - Sarmento, Juliano Sarmento A1 - Jeltsch, Florian A1 - Thuiller, Wilfried A1 - Higgins, Steven A1 - Midgley, Guy F. A1 - Rebelo, Anthony G. A1 - Rouget, Mathieu A1 - Schurr, Frank Martin T1 - Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae JF - Diversity & distributions : a journal of biological invasions and biodiversity N2 - Aim To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change. Location South African Cape Floristic Region. Methods We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat. Results Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography. Main conclusions Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography. KW - biodiversity refugia KW - CFR Proteaceae KW - climate change KW - demographic properties KW - habitat loss KW - local abundances KW - process-based range models KW - range filling KW - range size KW - species distribution models Y1 - 2013 U6 - https://doi.org/10.1111/ddi.12011 SN - 1366-9516 VL - 19 IS - 4 SP - 363 EP - 376 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - May, Felix A1 - Giladi, Itamar A1 - Ristow, Michael A1 - Ziv, Yaron A1 - Jeltsch, Florian T1 - Metacommunity, mainland-island system or island communities? : assessing the regional dynamics of plant communities in a fragmented landscape JF - Ecography : pattern and diversity in ecology ; research papers forum N2 - Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among-patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape-scale. In this study, we used extensive field data from a fragmented, semi-arid landscape in Israel to parameterize a multi-species incidence-function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics - the metacommunity, the mainland-island, or the island communities type - best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch-matrix study landscape is best represented as a system of highly isolated island' communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33-60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity. Y1 - 2013 U6 - https://doi.org/10.1111/j.1600-0587.2012.07793.x SN - 0906-7590 VL - 36 IS - 7 SP - 842 EP - 853 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lauterbach, D. A1 - Roemermann, C. A1 - Jeltsch, Florian A1 - Ristow, Michael T1 - Factors driving plant rarity in dry grasslands on different spatial scales: a functional trait approach JF - BIODIVERSITY AND CONSERVATION N2 - In European dry grasslands land-use changes affect plant species performance and frequency. Potential driving forces are eutrophication and habitat fragmentation. The importance of these factors is presumably scale dependent. We used a functional trait approach to detect processes that influence species frequency and endangerment on different spatial scales. We tested for associations between functional traits and (1) frequency and (2) degree of endangerment on local, regional and national scales. We focussed on five selected traits that describe the life-history of plant species and that are related to competition, dispersal ability and habitat specificity. Trait data on plant height, SLA, plant coverage, peak of flowering and diaspore mass were measured for 28 perennials from common to rare and endangered to non-endangered on 59 dry grassland sites in north-eastern Germany. Multiple regression models revealed that species frequency is positively and species endangerment negatively related to plant height, plant coverage and SLA on more than one spatial scale. On the local scale, diaspore mass has a negative effect on species frequency. More frequent and less endangered species show a later peak of flowering on nationwide and regional scales. We concluded that competition traits are more important on larger scales, whereas dispersal traits are more important for species frequency on the smaller scale. On national and regional scales, eutrophication and habitat loss may be the main drivers of species threat, whereas on the local scale fragmentation plays a crucial role for the performance of dry grassland species. KW - Species frequency KW - Species endangerment KW - Fragmentation KW - Eutrophication KW - SLA Y1 - 2013 U6 - https://doi.org/10.1007/s10531-013-0455-y SN - 0960-3115 VL - 22 IS - 10 SP - 2337 EP - 2352 PB - SPRINGER CY - DORDRECHT ER - TY - JOUR A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Peer, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics Y1 - 2013 UR - http://download.springer.com/static/pdf/827/art%253A10.1186%252F2051-3933-1- 6.pdf?auth66=1394891271_f1a4cb74d6be42ee3f8872ef2ca22c24&ext=.pdf U6 - https://doi.org/10.1186/2051-3933-1-6 ER -