TY - JOUR A1 - Oskinova, Lida A1 - Sun, W. A1 - Evans, C. J. A1 - Henault-Brunet, V. A1 - Chu, Y.-H. A1 - Gallagher, J. S. A1 - Guerrero, Martín A. A1 - Gruendl, R. A. A1 - Güdel, M. A1 - Silich, S. A1 - Chen, Y. A1 - Naze, Y. A1 - Hainich, Rainer A1 - Reyes-Iturbide, J. T1 - Discovery of x-ray emission from young suns in the small magellanic cloud JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low-and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low-and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy. KW - Magellanic Clouds KW - ISM: bubbles KW - H II regions KW - stars: winds, outflows KW - stars: pre-main sequence KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/765/1/73 SN - 0004-637X VL - 765 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sturm, R. A1 - Haberl, F. A1 - Oskinova, Lida A1 - Schurch, M. P. E. A1 - Henault-Brunet, V. A1 - Gallagher, J. S. A1 - Udalski, A. T1 - Long-term evolution of the neutron-star spin period of SXP1062 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The Be/X-ray binary SXP 1062 is of especial interest owing to the large spin period of the neutron star, its large spin-down rate, and the association with a supernova remnant constraining its age. This makes the source an important probe for accretion physics. Aims. To investigate the long-term evolution of the spin period and associated spectral variations, we performed an XMM-Newton target-of-opportunity observation of SXP 1062 during X-ray outburst. Methods. Spectral and timing analysis of the XMM-Newton data was compared with previous studies, as well as complementary Swift/XRT monitoring and optical spectroscopy with the SALT telescope were obtained. Results. The spin period was measured to be P-s = (1071.01 +/- 0.16) s on 2012 Oct. 14. The X-ray spectrum is similar to that of previous observations. No convincing cyclotron absorption features, which could be indicative for a high magnetic field strength, are found. The high-resolution RGS spectra indicate the presence of emission lines, which may not completely be accounted for by the SNR emission. The comparison of multi-epoch optical spectra suggest an increasing size or density of the decretion disc around the Be star. Conclusions. SXP 1062 showed a net spin-down with an average of P-s = ( 2.27 +/- 0.44) s yr(-1) over a baseline of 915 days. KW - pulsars: individual: SXP1062 KW - galaxies: individual: Small Magellanic Cloud KW - stars: emission-line, Be KW - stars: neutron KW - X-rays: binaries Y1 - 2013 U6 - https://doi.org/10.1051/0004-6361/201321755 SN - 0004-6361 VL - 556 IS - 4 PB - EDP Sciences CY - Les Ulis ER -