TY - JOUR A1 - Scherler, Dirk A1 - Schwanghart, Wolfgang T1 - Drainage divide networks BT - Part 2: Response to perturbations JF - Earth surface dynamics N2 - Drainage divides are organized into tree-like networks that may record information about drainage divide mobility. However, views diverge about how to best assess divide mobility. Here, we apply a new approach of automatically extracting and ordering drainage divide networks from digital elevation models to results from landscape evolution model experiments. We compared landscapes perturbed by strike-slip faulting and spatiotemporal variations in erodibility to a reference model to assess which topographic metrics (hillslope relief, flow distance, and chi) are diagnostic of divide mobility. Results show that divide segments that are a minimum distance of similar to 5 km from river confluences strive to attain constant values of hillslope relief and flow distance to the nearest stream. Disruptions of such patterns can be related to mobile divides that are lower than stable divides, closer to streams, and often asymmetric in shape. In general, we observe that drainage divides high up in the network, i.e., at great distances from river confluences, are more susceptible to disruptions than divides closer to these confluences and are thus more likely to record disturbance for a longer time period. We found that across-divide differences in hillslope relief proved more useful for assessing divide migration than other tested metrics. However, even stable drainage divide networks exhibit across-divide differences in any of the studied topographic metrics. Finally, we propose a new metric to quantify the connectivity of divide junctions. KW - dynamics KW - landscape evolution KW - low-relief KW - patterns KW - river KW - scale KW - tectonics Y1 - 2020 U6 - https://doi.org/10.5194/esurf-8-261-2020 SN - 2196-6311 SN - 2196-632X VL - 8 IS - 2 SP - 261 EP - 274 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Eugster, Patricia A1 - Thiede, Rasmus Christoph A1 - Scherler, Dirk A1 - Stübner, Konstanze A1 - Sobel, Edward A1 - Strecker, Manfred T1 - Segmentation of the Main Himalayan Thrust Revealed by Low-Temperature Thermochronometry in the Western Indian Himalaya JF - Tectonics N2 - Despite remarkable tectonostratigraphic similarities along the Himalayan arc, pronounced topographic and exhumational variability exists in different morphotectonic segments. The processes responsible for this segmentation are debated. Of particular interest is a 30- to 40-km-wide orogen-parallel belt of rapid exhumation that extends from central Nepal to the western Himalaya and its possible linkage to a midcrustal ramp in the basal decollement, and the related growth of Lesser Himalayan duplex structures. Here we present 26 new apatite fission track cooling ages from the Beas-Lahul region, at the transition from the Central to the Western Himalaya (77 degrees-78 degrees E) to investigate segmentation in the Himalayan arc from a thermochronologic perspective. Together with previously published data from this part of the orogen, we document significant lateral changes in exhumation between the Dhauladar Range to the west, the Beas-Lahul region, and the Sutlej area to the east of the study area. In contrast to the Himalayan front farther east, exhumation in the far western sectors is focused at the frontal parts of the mountain range and associated with the hanging wall of the Main Boundary Thrust fault ramp. Our results allow us to spatially correlate the termination of the rapid exhumation belt with a midcrustal ramp to the west. We suggest that a plunging anticline at the northwestern edge of the Larji-Kullu-Rampur window represents the termination of the Central Himalayan segment, which is related to the evolution of the Lesser Himalayan duplex. Key Points KW - exhumation KW - Himalaya KW - duplex KW - fission track thermochronology KW - MHT Y1 - 2018 U6 - https://doi.org/10.1029/2017TC004752 SN - 0278-7407 SN - 1944-9194 VL - 37 IS - 8 SP - 2710 EP - 2726 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Scherler, Dirk T1 - Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques JF - Earth surface dynamics N2 - The analysis of longitudinal river profiles is an important tool for studying landscape evolution. However, characterizing river profiles based on digital elevation models (DEMs) suffers from errors and artifacts that particularly prevail along valley bottoms. The aim of this study is to characterize uncertainties that arise from the analysis of river profiles derived from different, near-globally available DEMs. We devised new algorithms quantile carving and the CRS algorithm - that rely on quantile regression to enable hydrological correction and the uncertainty quantification of river profiles. We find that globally available DEMs commonly overestimate river elevations in steep topography. The distributions of elevation errors become increasingly wider and right skewed if adjacent hillslope gradients are steep. Our analysis indicates that the AW3D DEM has the highest precision and lowest bias for the analysis of river profiles in mountainous topography. The new 12m resolution TanDEM-X DEM has a very low precision, most likely due to the combined effect of steep valley walls and the presence of water surfaces in valley bottoms. Compared to the conventional approaches of carving and filling, we find that our new approach is able to reduce the elevation bias and errors in longitudinal river profiles. Y1 - 2017 U6 - https://doi.org/10.5194/esurf-5-821-2017 SN - 2196-6311 SN - 2196-632X VL - 5 SP - 821 EP - 839 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wulf, Hendrik A1 - Bookhagen, Bodo A1 - Scherler, Dirk T1 - Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling JF - Advances in water resources N2 - Rivers draining the southern Himalaya provide most of the water supply for the densely populated Indo-Gangetic plains. Despite the importance of water resources in light of climate change, the relative contributions of rainfall, snow and glacier melt to discharge are not well understood, due to the scarcity of ground-based data in this complex terrain. Here, we quantify discharge sources in the Sutlej Valley, western Himalaya, from 2000 to 2012 with a distributed hydrological model that is based on daily, ground-calibrated remote-sensing observation. Based on the consistently good model performance, we analyzed the spatiotemporal distribution of hydrologic components and quantified their contribution to river discharge. Our results indicate that the Sutlej River's annual discharge at the mountain front is sourced to 55% by effective rainfall (rainfall reduced by evapotranspiration), 35% by snow melt and 10% by glacier melt. In the high-elevation orogenic interior glacial runoff contributes ∼30% to annual river discharge. These glacier melt contributions are especially important during years with substantially reduced rainfall and snowmelt runoff, as during 2004, to compensate for low river discharge and ensure sustained water supply and hydropower generation. In 2004, discharge of the Sutlej River totaled only half the maximum annual discharge; with 17.3% being sourced by glacier melt. Our findings underscore the importance of calibrating remote-sensing data with ground-based data to constrain hydrological models with reasonable accuracy. For instance, we found that TRMM (Tropical Rainfall Measuring Mission) product 3B42 V7 systematically overestimates rainfall in arid regions of our study area by a factor of up to 5. By quantifying the spatiotemporal distribution of water resources we provide an important assessment of the potential impact of global warming on river discharge in the western Himalaya. Given the near-global coverage of the utilized remote-sensing datasets this hydrological modeling approach can be readily transferred to other data-sparse regions. KW - Runoff modeling KW - MODIS KW - TRMM KW - Mountain hydrology KW - Sutlej River Y1 - 2016 U6 - https://doi.org/10.1016/j.advwatres.2015.12.004 SN - 0309-1708 SN - 1872-9657 VL - 88 SP - 152 EP - 169 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - Robinson, Ruth A. J. A1 - Savi, Sara A1 - Phillips, William M. A1 - Spencer, Joel Q. G. A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Tofelde, Stefanie A1 - Alonso, Ricardo N. A1 - Kubik, Peter W. A1 - Binnie, Steven A. A1 - Strecker, Manfred T1 - Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity JF - Journal of geophysical research : Earth surface N2 - Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated. KW - berylium-10 KW - optically stimulated luminescence KW - Humahuaca Basin KW - South American Monsoon System KW - fluvial terraces KW - landscape connectivity Y1 - 2016 U6 - https://doi.org/10.1002/2015JF003607 SN - 2169-9003 SN - 2169-9011 VL - 121 SP - 392 EP - 414 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Eugster, Patricia A1 - Scherler, Dirk A1 - Thiede, Rasmus Christoph A1 - Codilean, Alexandru T. A1 - Strecker, Manfred T1 - Rapid Last Glacial Maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: New insights from Be-10-dating of ice-polished bedrock surfaces in the Chandra Valley, NW Himalaya JF - Geophysical research letters N2 - Despite a large number of dated glacial landforms in the Himalaya, the ice extent during the global Last Glacial Maximum (LGM) from 19 to 23 ka is only known to first order. New cosmogenic Be-10 exposure ages from well-preserved glacially polished surfaces, combined with published data, and an improved production rate scaling model allow reconstruction of the LGM ice extent and subsequent deglaciation in the Chandra Valley of NW India. We show that a >1000 m thick valley glacier retreated >150 km within a few thousand years after the onset of LGM deglaciation. By comparing the recession of the Chandra Valley Glacier and other Himalayan glaciers with those of Northern and Southern Hemisphere glaciers, we demonstrate that post-LGM deglaciation was similar and nearly finished prior to the Bolling/Allerod interstadial. Our study supports the view that many Himalayan glaciers advanced during the LGM, likely in response to global variations in temperature. Y1 - 2016 U6 - https://doi.org/10.1002/2015GL066077 SN - 0094-8276 SN - 1944-8007 VL - 43 SP - 1589 EP - 1597 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dey, Saptarshi A1 - Thiede, Rasmus Christoph A1 - Schildgen, Taylor F. A1 - Wittmann, Hella A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Jain, Vikrant A1 - Strecker, Manfred T1 - Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India JF - Earth & planetary science letters N2 - Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 10(3) to 10(5) yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic Be-10 indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 +/- 3.2 ka and 43.0 +/- 2.7 ka (1 sigma). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 +/- 1.2 ka and 15.3 +/- 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 +/- 0.4 ka (T3), 7.1 +/- 0.4 ka (T4), 5.2 +/- 0.4 ka (T5) and 3.6 +/- 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision. (C) 2016 Elsevier B.V. All rights reserved. KW - alluvial-fan sedimentation KW - terrestrial cosmogenic nuclides KW - Indian Summer Monsoon KW - Last Glacial Maximum KW - paleo-erosion rate Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.05.050 SN - 0012-821X SN - 1385-013X VL - 449 SP - 321 EP - 331 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dey, Saptarshi A1 - Thiede, Rasmus Christoph A1 - Schildgen, Taylor F. A1 - Wittmann, Hella A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Strecker, Manfred T1 - Holocene internal shortening within the northwest Sub-Himalaya: Out-of-sequence faulting of the Jwalamukhi Thrust, India JF - Tectonics N2 - The southernmost thrust of the Himalayan orogenic wedge that separates the foreland from the orogen, the Main Frontal Thrust, is thought to accommodate most of the ongoing crustal shortening in the Sub-Himalaya. Steepened longitudinal river profile segments, terrace offsets, and back-tilted fluvial terraces within the Kangra reentrant of the NW Sub-Himalaya suggest Holocene activity of the Jwalamukhi Thrust (JMT) and other thrust faults that may be associated with strain partitioning along the toe of the Himalayan wedge. To assess the shortening accommodated by the JMT, we combine morphometric terrain analyses with in situ Be-10-based surface-exposure dating of the deformed terraces. Incision into upper Pleistocene sediments within the Kangra Basin created two late Pleistocene terrace levels (T1 and T2). Subsequent early Holocene aggradation shortly before similar to 10ka was followed by episodic reincision, which created four cut-and-fill terrace levels, the oldest of which (T3) was formed at 10.10.9ka. A vertical offset of 445m of terrace T3 across the JMT indicates a shortening rate of 5.60.8 to 7.51.1mma(-1) over the last similar to 10ka. This result suggests that thrusting along the JMT accommodates 40-60% of the total Sub-Himalayan shortening in the Kangra reentrant over the Holocene. We speculate that this out-of-sequence shortening may have been triggered or at least enhanced by late Pleistocene and Holocene erosion of sediments from the Kangra Basin. KW - fluvial terrace KW - cosmogenic nuclides KW - steepness index KW - Jwalamukhi Thrust KW - shortening KW - orogenic wedge Y1 - 2016 U6 - https://doi.org/10.1002/2015TC004002 SN - 0278-7407 SN - 1944-9194 VL - 35 SP - 2677 EP - 2697 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mey, Jürgen A1 - Scherler, Dirk A1 - Wickert, Andrew D. A1 - Egholm, David L. A1 - Tesauro, Magdala A1 - Schildgen, Taylor F. A1 - Strecker, Manfred T1 - Glacial isostatic uplift of the European Alps JF - Nature Communications Y1 - 2016 U6 - https://doi.org/10.1038/ncomms13382 SN - 2041-1723 VL - 7 SP - 2357 EP - 2371 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Savi, Sara A1 - Schildgen, Taylor F. A1 - Tofelde, Stefanie A1 - Wittmann, Hella A1 - Scherler, Dirk A1 - Mey, Jürgen A1 - Alonso, Ricardo N. A1 - Strecker, Manfred T1 - Climatic controls on debris-flow activity and sediment aggradation: The Del Medio fan, NW Argentina JF - Journal of geophysical research : Earth surface N2 - In the Central Andes, several studies on alluvial terraces and valley fills have linked sediment aggradation to periods of enhanced sediment supply. However, debate continues over whether tectonic or climatic factors are most important in triggering the enhanced supply. The Del Medio catchment in the Humahuaca Basin (Eastern Cordillera, NW Argentina) is located within a transition zone between subhumid and arid climates and hosts the only active debris-flow fan within this intermontane valley. By combining Be-10 analyses of boulder and sediment samples within the Del Medio catchment, with regional morphometric measurements of nearby catchments, we identify the surface processes responsible for aggradation in the Del Medio fan and their likely triggers. We find that the fan surface has been shaped by debris flows and channel avulsions during the last 400 years. Among potential tectonic, climatic, and autogenic factors that might influence deposition, our analyses point to a combination of several favorable factors that drive aggradation. These are in particular the impact of occasional abundant rainfall on steep slopes in rock types prone to failure, located in a region characterized by relatively low rainfall amounts and limited transport capacity. These characteristics are primarily associated with the climatic transition zone between the humid foreland and the arid orogen interior, which creates an imbalance between sediment supply and sediment transfer. The conditions and processes that drive aggradation in the Del Medio catchment today may provide a modern analog for the conditions and processes that drove aggradation in other nearby tributaries in the past. Y1 - 2016 U6 - https://doi.org/10.1002/2016JF003912 SN - 2169-9003 SN - 2169-9011 VL - 121 SP - 2424 EP - 2445 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mey, Jürgen A1 - Scherler, Dirk A1 - Zeilinger, Gerold A1 - Strecker, Manfred T1 - Estimating the fill thickness and bedrock topography in intermontane valleys using artificial neural networks JF - Journal of geophysical research : Earth surface N2 - Thick sedimentary fills in intermontane valleys are common in formerly glaciated mountain ranges but difficult to quantify. Yet knowledge of the fill thickness distribution could help to estimate sediment budgets of mountain belts and to decipher the role of stored material in modulating sediment flux from the orogen to the foreland. Here we present a new approach to estimate valley fill thickness and bedrock topography based on the geometric properties of a landscape using artificial neural networks. We test the potential of this approach following a four-tiered procedure. First, experiments with synthetic, idealized landscapes show that increasing variability in surface slopes requires successively more complex network configurations. Second, in experiments with artificially filled natural landscapes, we find that fill volumes can be estimated with an error below 20%. Third, in natural examples with valley fill surfaces that have steeply inclined slopes, such as the Unteraar and the Rhone Glaciers in the Swiss Alps, for example, the average deviation of cross-sectional area between the measured and the modeled valley fill is 26% and 27%, respectively. Finally, application of the method to the Rhone Valley, an overdeepened glacial valley in the Swiss Alps, yields a total estimated sediment volume of 9711km(3) and an average deviation of cross-sectional area between measurements and model estimates of 21.5%. Our new method allows for rapid assessment of sediment volumes in intermontane valleys while eliminating most of the subjectivity that is typically inherent in other methods where bedrock reconstructions are based on digital elevation models. KW - sediment storage KW - sediment thickness KW - intermontane valleys KW - geomorphometry KW - artificial neural networks Y1 - 2015 U6 - https://doi.org/10.1002/2014JF003270 SN - 2169-9003 SN - 2169-9011 VL - 120 IS - 7 SP - 1301 EP - 1320 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Acosta, Veronica Torres A1 - Schildgen, Taylor F. A1 - Clarke, Brian A. A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Wittmann, Hella A1 - von Blanckenburg, Friedhelm A1 - Strecker, Manfred T1 - Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa JF - Lithosphere N2 - The mechanisms by which climate and vegetation affect erosion rates over various time scales lie at the heart of understanding landscape response to climate change. Plot-scale field experiments show that increased vegetation cover slows erosion, implying that faster erosion should occur under low to moderate vegetation cover. However, demonstrating this concept over long time scales and across landscapes has proven to be difficult, especially in settings complicated by tectonic forcing and variable slopes. We investigate this problem by measuring cosmogenic Be-10-derived catchment-mean denudation rates across a range of climate zones and hillslope gradients in the Kenya Rift, and by comparing our results with those published from the Rwenzori Mountains of Uganda. We find that denudation rates from sparsely vegetated parts of the Kenya Rift are up to 0.13 mm/yr, while those from humid and more densely vegetated parts of the Kenya Rift flanks and the Rwenzori Mountains reach a maximum of 0.08 mm/yr, despite higher median hillslope gradients. While differences in lithology and recent land-use changes likely affect the denudation rates and vegetation cover values in some of our studied catchments, hillslope gradient and vegetation cover appear to explain most of the variation in denudation rates across the study area. Our results support the idea that changing vegetation cover can contribute to complex erosional responses to climate or land-use change and that vegetation cover can play an important role in determining the steady-state slopes of mountain belts through its stabilizing effects on the land surface. Y1 - 2015 U6 - https://doi.org/10.1130/L402.1 SN - 1941-8264 SN - 1947-4253 VL - 7 IS - 4 SP - 408 EP - 420 PB - American Institute of Physics CY - Boulder ER - TY - INPR A1 - Wang, Ping A1 - Scherler, Dirk A1 - Jing Liu-Zeng, A1 - Mey, Jürgen A1 - Avouac, Jean-Philippe A1 - Zhang, Yunda A1 - Shi, Dingguo T1 - GEOMORPHOLOGY Response to Comment on "Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet" T2 - Science N2 - In their Comment, Zeitler et al. do not challenge our results or interpretation. Our study does not disprove coupling between tectonic uplift and erosion but suggests that this coupling cannot be the sole explanation of rapid uplift in the Himalayan syntaxes. Y1 - 2015 SN - 0036-8075 SN - 1095-9203 VL - 349 IS - 6250 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Wulf, Hendrik A1 - Preusser, Frank A1 - Strecker, Manfred T1 - Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India JF - Earth & planetary science letters N2 - The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and Be-10-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of similar to 2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates. (C) 2015 Elsevier B.V. All rights reserved. KW - paleo-erosion rates KW - climate change KW - river terraces KW - landscape evolution KW - hillslopes KW - Himalaya Y1 - 2015 U6 - https://doi.org/10.1016/j.epsl.2015.06.034 SN - 0012-821X SN - 1385-013X VL - 428 SP - 255 EP - 266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Scherler, Dirk T1 - Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth surface sciences JF - Earth surface dynamics N2 - TopoToolbox is a MATLAB program for the analysis of digital elevation models (DEMs). With the release of version 2, the software adopts an object-oriented programming (OOP) approach to work with gridded DEMs and derived data such as flow directions and stream networks. The introduction of a novel technique to store flow directions as topologically ordered vectors of indices enables calculation of flow-related attributes such as flow accumulation similar to 20 times faster than conventional algorithms while at the same time reducing memory overhead to 33% of that required by the previous version. Graphical user interfaces (GUIs) enable visual exploration and interaction with DEMs and derivatives and provide access to tools targeted at fluvial and tectonic geomorphologists. With its new release, TopoToolbox has become a more memory-efficient and faster tool for basic and advanced digital terrain analysis that can be used as a framework for building hydrological and geomorphological models in MATLAB. Y1 - 2014 U6 - https://doi.org/10.5194/esurf-2-1-2014 SN - 2196-6311 SN - 2196-632X VL - 2 IS - 1 SP - 1 EP - 7 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Tectonic control on Be-10-derived erosion rates in the Garhwal Himalaya, India JF - Journal of geophysical research : Earth surface N2 - Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 Be-10-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, northern India. Tributary erosion rates range between similar to 0.1 and 0.5mmyr(-1) in the Lesser Himalaya and similar to 1 and 2mmyr(-1) in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. Finally, analysis of sample results from larger main stem rivers indicates significant variability of Be-10-derived erosion rates, possibly related to nonproportional sediment supply from different tributaries and incomplete mixing in main stem channels. KW - Himalaya KW - erosion KW - tectonics KW - cosmogenic nuclides KW - channel steepness KW - stream power Y1 - 2014 U6 - https://doi.org/10.1002/2013JF002955 SN - 2169-9003 SN - 2169-9011 VL - 119 IS - 2 SP - 83 EP - 105 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Scherler, Dirk A1 - Munack, Henry A1 - Mey, Jürgen A1 - Eugster, Patricia A1 - Wittmann, Hella A1 - Codilean, Alexandru T. A1 - Kubik, Peter A1 - Strecker, Manfred T1 - Ice dams, outburst floods, and glacial incision at the western margin of the Tibetan Plateau: A > 100 k.y. chronology from the Shyok Valley, Karakoram JF - Geological Society of America bulletin N2 - Some of the largest and most erosive floods on Earth result from the failure of glacial dams. While potentially cataclysmic ice dams are recognized to have repeatedly formed along ice-sheet margins, much less is known about the frequency and longevity of ice dams caused by mountain glaciers, and their impact on landscape evolution. Here we present field observations and results from cosmogenic nuclide dating that allow reconstructing a > 100-k.y.-long history of glacial damming in the Shyok Valley, eastern Karakoram (South Asia). Our field observations provide evidence that Asia's second-longest glacier, the Siachen, once extended for over 180 km and blocked the Shyok River during the penultimate glacial period, leading to upstream deposition of a more than 400-m-thick fluvio-lacustrine valley fill. Be-10-depth profile modeling indicates that glacial damming ended with the onset of the Eemian interglacial and that the Shyok River subsequently incised the valley fill at an average rate of similar to 4-7 m k.y.(-1). Comparison with contemporary ice-dammed lakes in the Karakoram and elsewhere suggests recurring outburst floods during the aggradation period, while over 25 cycles of fining-upward lake deposits within the valley fill indicate impounding of floods from farther upstream. Despite prolonged damming, the net effect of this and probably earlier damming episodes by the Siachen Glacier is dominated by glacial erosion in excess of fluvial incision, as evidenced by a pronounced overdeepening that follows the glaciated valley reach. Strikingly similar overdeepened valleys at all major confluences of the Shyok and Indus Rivers with Karakoram tributaries indicate that glacial dams and subsequent outburst floods have been widespread and frequent in this region during the Quaternary. Our study suggests that the interaction of Karakoram glaciers with the Shyok and Indus Rivers promoted valley incision and headward erosion into the western margin of the Tibetan Plateau. Y1 - 2014 U6 - https://doi.org/10.1130/B30942.1 SN - 0016-7606 SN - 1943-2674 VL - 126 IS - 5-6 SP - 738 EP - 758 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Munack, Henry A1 - Korup, Oliver A1 - Resentini, Alberto A1 - Limonta, Mara A1 - Garzanti, Eduardo A1 - Bloethe, Jan H. A1 - Scherler, Dirk A1 - Wittmann, Hella A1 - Kubik, Peter W. T1 - Postglacial denudation of western Tibetan Plateau margin outpaced by long-term exhumation JF - Geological Society of America bulletin N2 - The Indus River, one of Asia's premier rivers, drains the western Tibetan Plateau and the Nanga Parbat syntaxis. These two areas juxtapose some of the lowest and highest topographic relief and commensurate denudation rates in the Himalaya-Tibet orogen, respectively, yet the spatial pattern of denudation rates upstream of the syntaxis remains largely unclear, as does the way in which major rivers drive headward incision into the Tibetan Plateau. We report a new inventory of Be-10-based basinwide denudation rates from 33 tributaries flanking the Indus River along a 320 km reach across the western Tibetan Plateau margin. We find that denudation rates of up to 110 mm k.y.(-1) in the Ladakh and Zanskar Ranges systematically decrease eastward to 10 mm k.y.(-1) toward the Tibetan Plateau. Independent results from bulk petrographic and heavy mineral analyses support this denudation gradient. Assuming that incision along the Indus exerts the base-level control on tributary denudation rates, our data show a systematic eastward decrease of landscape downwearing, reaching its minimum on the Tibetan Plateau. In contrast, denudation rates increase rapidly 150-200 km downstream of a distinct knick-point that marks the Tibetan Plateau margin in the Indus River longitudinal profile. We infer that any vigorous headward incision and any accompanying erosional waves into the interior of the plateau mostly concerned reaches well below this plateau margin. Moreover, reported long-term (>10(6) yr) exhumation rates from low-temperature chronometry of 0.1-0.75 mm yr(-1) consistently exceed our Be-10-derived denudation rates. With averaging time scales of 10(3)-10(4) yr for our denudation data, we report postglacial rates of downwearing in a tectonically idle landscape. To counterbalance this apparent mismatch, denudation rates must have been higher in the Quaternary during glacial-interglacial intervals. Y1 - 2014 U6 - https://doi.org/10.1130/B30979.1 SN - 0016-7606 SN - 1943-2674 VL - 126 IS - 11-12 SP - 1580 EP - 1594 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Wang, Ping A1 - Scherler, Dirk A1 - Jing Liu-Zeng, A1 - Mey, Jürgen A1 - Avouac, Jean-Philippe A1 - Zhang, Yunda A1 - Shi, Dingguo T1 - Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet JF - Science N2 - The Himalayan mountains are dissected by some of the deepest and most impressive gorges on Earth. Constraining the interplay between river incision and rock uplift is important for understanding tectonic deformation in this region. We report here the discovery of a deeply incised canyon of the Yarlung Tsangpo River, at the eastern end of the Himalaya, which is now buried under more than 500 meters of sediments. By reconstructing the former valley bottom and dating sediments at the base of the valley fill, we show that steepening of the Tsangpo Gorge started at about 2 million to 2.5 million years ago as a consequence of an increase in rock uplift rates. The high erosion rates within the gorge are therefore a direct consequence of rapid rock uplift. Y1 - 2014 U6 - https://doi.org/10.1126/science.1259041 SN - 0036-8075 SN - 1095-9203 VL - 346 IS - 6212 SP - 978 EP - 981 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Spatially variable response of Himalayan glaciers to climate change affected by debris cover JF - Nature geoscience N2 - Controversy about the current state and future evolution of Himalayan glaciers has been stirred up by erroneous statements in the fourth report by the Intergovernmental Panel on Climate Change(1,2). Variable retreat rates(3-6) and a paucity of glacial mass-balance data(7,8) make it difficult to develop a coherent picture of regional climate-change impacts in the region. Here, we report remotely-sensed frontal changes and surface velocities from glaciers in the greater Himalaya between 2000 and 2008 that provide evidence for strong spatial variations in glacier behaviour which are linked to topography and climate. More than 65% of the monsoon-influenced glaciers that we observed are retreating, but heavily debris-covered glaciers with stagnant low-gradient terminus regions typically have stable fronts. Debris-covered glaciers are common in the rugged central Himalaya, but they are almost absent in subdued landscapes on the Tibetan Plateau, where retreat rates are higher. In contrast, more than 50% of observed glaciers in the westerlies-influenced Karakoram region in the northwestern Himalaya are advancing or stable. Our study shows that there is no uniform response of Himalayan glaciers to climate change and highlights the importance of debris cover for understanding glacier retreat, an effect that has so far been neglected in predictions of future water availability(9,10) or global sea level(11). Y1 - 2011 U6 - https://doi.org/10.1038/NGEO1068 SN - 1752-0894 VL - 4 IS - 3 SP - 156 EP - 159 PB - Nature Publ. Group CY - New York ER -