TY - JOUR A1 - Bengfort, Michael A1 - van Velzen, Ellen A1 - Gaedke, Ursula T1 - Slight phenotypic variation in predators and prey causes complex predator-prey oscillations JF - Ecological Complexity N2 - Predator-prey oscillations are expected to show a 1/4-phase lag between predator and prey. However, observed dynamics of natural or experimental predator-prey systems are often more complex. A striking but hardly studied example are sudden interruptions of classic 1/4-lag cycles with periods of antiphase oscillations, or periods without any regular predator-prey oscillations. These interruptions occur for a limited time before the system reverts to regular 1/4-lag oscillations, thus yielding intermittent cycles. Reasons for this behaviour are often difficult to reveal in experimental systems. Here we test the hypothesis that such complex dynamical behaviour may result from minor trait variation and trait adaptation in both the prey and predator, causing recurrent small changes in attack rates that may be hard to capture by empirical measurements. Using a model structure where the degree of trait variation in the predator can be explicitly controlled, we show that a very limited amount of adaptation resulting in 10-15% temporal variation in attack rates is already sufficient to generate these intermittent dynamics. Such minor variation may be present in experimental predator-prey systems, and may explain disruptions in regular 1/4-lag oscillations. KW - Predator-prey cycles KW - Phase relationships KW - Intermittent cycles KW - Adaptive traits KW - Eco-evolutionary dynamics KW - Complex dynamics Y1 - 2017 U6 - https://doi.org/10.1016/j.ecocom.2017.06.003 SN - 1476-945X SN - 1476-9840 VL - 31 SP - 115 EP - 124 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Seiler, Claudia A1 - van Velzen, Ellen A1 - Neu, Thomas R. A1 - Gaedke, Ursula A1 - Berendonk, Thomas U. A1 - Weitere, Markus T1 - Grazing resistance of bacterial biofilms: a matter of predators’ feeding trait JF - FEMS microbiology ecology N2 - Biofilm formation in bacteria is considered to be one strategy to avoid protozoan grazing. However, this assumption is largely based on experiments with suspension-feeding protozoans. Here we test the hypothesis that grazing resistance depends on both the grazers’ feeding trait and the bacterial phenotype, rather than being a general characteristic of bacterial biofilms. We combined batch experiments with mathematical modelling, considering the bacterium Pseudomonas putida and either a suspension-feeding (i.e. the ciliate Paramecium tetraurelia) or a surface-feeding grazer (i.e. the amoeba Acanthamoeba castellanii). We find that both plankton and biofilm phenotypes were consumed, when exposed to their specialised grazer, whereas the other phenotype remained grazing-resistant. This was consistently shown in two experiments (starting with either only planktonic bacteria or with additional pre-grown biofilms) and matches model predictions. In the experiments, the plankton feeder strongly stimulated the biofilm biomass. This stimulation of the resistant prey phenotype was not predicted by the model and it was not observed for the biofilm feeders, suggesting the existence of additional mechanisms that stimulate biofilm formation besides selective feeding. Overall, our results confirm our hypothesis that grazing resistance is a matter of the grazers’ trait (i.e. feeding type) rather than a biofilm-specific property. KW - protozoa KW - biofilm KW - plankton KW - predator-prey model KW - grazing defence KW - feeding trait Y1 - 2017 U6 - https://doi.org/10.1093/femsec/fix112 SN - 0168-6496 SN - 1574-6941 VL - 93 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - van Velzen, Ellen A1 - Gaedke, Ursula T1 - Disentangling eco-evolutionary dynamics of predator-prey coevolution: the case of antiphase cycles JF - Scientific reports N2 - The impact of rapid predator-prey coevolution on predator-prey dynamics remains poorly understood, as previous modelling studies have given rise to contradictory conclusions and predictions. Interpreting and reconciling these contradictions has been challenging due to the inherent complexity of model dynamics, defying mathematical analysis and mechanistic understanding. We develop a new approach here, based on the Geber method for deconstructing eco-evolutionary dynamics, for gaining such understanding. We apply this approach to a co-evolutionary predator-prey model to disentangle the processes leading to either antiphase or 1/4-lag cycles. Our analysis reveals how the predator-prey phase relationship is driven by the temporal synchronization between prey biomass and defense dynamics. We further show when and how prey biomass and trait dynamics become synchronized, resulting in antiphase cycles, allowing us to explain and reconcile previous modelling and empirical predictions. The successful application of our proposed approach provides an important step towards a comprehensive theory on eco-evolutionary feedbacks in predator-prey systems. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-17019-4 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER -