TY - JOUR A1 - De Cahsan, Binia A1 - Nagel, Rebecca A1 - Schedina, Ina-Maria A1 - King, James J. A1 - Bianco, Pier G. A1 - Tiedemann, Ralph A1 - Ketmaier, Valerio T1 - Phylogeography of the European brook lamprey (Lampetra planeri) and the European river lamprey (Lampetra fluviatilis) species pair based on mitochondrial data JF - Journal of fish biology N2 - The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity. KW - European lamprey KW - Lampetra KW - paired species KW - phylogeography KW - population KW - structure Y1 - 2020 U6 - https://doi.org/10.1111/jfb.14279 SN - 0022-1112 SN - 1095-8649 VL - 96 IS - 4 SP - 905 EP - 912 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - GEN A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Krause, Ulrike A1 - Curio, Eberhard A1 - Tiedemann, Ralph T1 - Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss N2 - Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 378 KW - biogeography KW - bucerotidae KW - conservation genetics KW - genetic diversity loss KW - microsatellites KW - mitochondrial control region I KW - Philippine archipelago KW - phylogeography Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401108 ER - TY - JOUR A1 - Sbragaglia, Valerio A1 - Lamanna, Francesco A1 - Mat, Audrey M. A1 - Rotllant, Guiomar A1 - Joly, Silvia A1 - Ketmaier, Valerio A1 - de la Iglesia, Horacio O. A1 - Aguzzi, Jacopo T1 - Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk JF - PLoS one N2 - The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12-12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0141893 SN - 1932-6203 VL - 10 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Sbragaglia, Valerio A1 - Lamanna, Francesco A1 - Mat, Audrey M. A1 - Rotllant, Guiomar A1 - Joly, Silvia A1 - Ketmaier, Valerio A1 - de la Iglesia, Horacio O. A1 - Aguzzi, Jacopo T1 - Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk JF - PLoS one N2 - The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0141893 SN - 1932-6203 VL - 10 IS - 11 PB - Public Library of Science CY - Lawrence ER - TY - GEN A1 - Sbragaglia, Valerio A1 - Lamanna, Francesco A1 - Mat, Audrey M. A1 - Rotllant, Guiomar A1 - Joly, Silvia A1 - Ketmaier, Valerio A1 - de la Iglesia, Horacio O. A1 - Aguzzi, Jacopo T1 - Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk N2 - The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 205 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-84432 ER - TY - JOUR A1 - Bianco, Pier Giorgio A1 - Ketmaier, Valerio T1 - A revision of the Rutilus complex from Mediterranean Europe with description of a new genus, Sarmarutilus, and a new species, Rutilus stoumboudae (Teleostei: Cyprinidae) JF - Zootaxa : an international journal of zootaxonomy ; a rapid international journal for animal taxonomists N2 - By combining morphology, ecology, biology, and biogeography with the available molecular (sequence variation of the entire mitochondrial cytochrome b gene; cyt-b) and karyology data, the taxonomy of several species of the Rutilus complex inhabiting southern Europe is revised. Rutilus stoumboudae, new species, is described from Lake Volvi, Greece. It differs from Rutilus rutilus in possessing more total GR and less branched rays in both dorsal and anal fins and in its placement in the cyt-b based phylogeny of the genus. The resurrected genus Leucos Heckel, 1843 (type species Leucos aula, Bonaparte, 1841), which according to molecular data diverged from Rutilus more than 5 million years ago, during the Messinian salinity crisis, includes five species of small size, without spinous tubercles on scales and head in reproductive males, pharyngeal teeth formula 5-5, and all show a preference for still waters. Leucos aula is the Italian species endemic in the Padany-Venetian district: L. basak is widespread in Croatia, Albania, Montenegro and former Yugoslav Republic of Macedonia (FYROM); L. albus, recently described from Lake Skadar, Montenegro, is also found in rivers Moraca and Zeta (Montenegro). L. albus differs from L. basak, its closest relative, in having more scales on the LL and less anal-fin rays; L. panosi is endemic to the western-Greece district, and L. ylikiensis is endemic to lakes Yliki and Paralimni in eastern Greece (introduced in Lake Volvi). Among the nominal species examined, Rutilus karamani, R. ohridanus, R. prespensis and R. prespensis vukovici are all junior synonyms of Leucos basak. Rutilus vegariticus is definitively regarded as junior synonym for R. rutilus. Sarmarutilus n.gen. is a monotypic genus, with Sarmarutilus rubilio as the type species. According to phylogenetic data, Sarmarutilus rubilio is basal to a cluster of species that includes Leucos basak, L. albus, L. aula, L. panosi and L. ylikiensis. Sarmarutilus possibly evolved in pre-Messinian time, in the Lago Mare, entered the Mediterranean area during the Messinian Lago Mare phase of the Mediterranean Sea and survived only in the Tuscany-Latium district. This genus differs from Leucos in having large pearl organs on the central part of head and body scales in mature males and for the habitat preference, being a riverine-adapted species. It differs from Rutilus in pharyngeal teeth formula (5-5 in Sarmarutilus and 6-5 in Rutilus), size (small in Sarmarutilus and large in Rutilus) and for the preferential habitat (riverine vs. still water). Finally, lectotypes for Leucos basak, Leucos aula, and Sarmarutilus rubilio are designated. KW - Freshwater fish KW - Mediterranean Europe KW - Cyprinidae KW - genera Rutilus KW - Leucos KW - Sarmarutilus new genus KW - new species Y1 - 2014 SN - 1175-5326 SN - 1175-5334 VL - 3841 IS - 3 SP - 379 EP - 402 PB - Magnolia Press CY - Auckland ER - TY - JOUR A1 - Schedina, Ina-Maria A1 - Pfautsch, Simone A1 - Hartmann, Stefanie A1 - Dolgener, N. A1 - Polgar, Anika A1 - Bianco, Pier Giorgio A1 - Tiedemann, Ralph A1 - Ketmaier, Valerio T1 - Isolation and characterization of eight microsatellite loci in the brook lamprey Lampetra planeri (Petromyzontiformes) using 454 sequence data JF - Journal of fish biology N2 - Eight polymorphic microsatellite loci were developed for the brook lamprey Lampetra planeri through 454 sequencing and their usefulness was tested in 45 individuals of both L. planeri and the river lamprey Lampetra fluviatilis. The number of alleles per loci ranged between two and five; the Italian and Irish populations had a mean expected heterozygosity of 0.388 and 0.424 and a mean observed heterozygosity of 0.418 and 0.411, respectively. (C) 2014 The Fisheries Society of the British Isles KW - conservation KW - population structure KW - species pair Y1 - 2014 U6 - https://doi.org/10.1111/jfb.12470 SN - 0022-1112 SN - 1095-8649 VL - 85 IS - 3 SP - 960 EP - 964 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Diversification of Ponto-Caspian aquatic fauna - morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae) JF - Molecular phylogenetics and evolution N2 - The geological history of the Ponto-Caspian region, with alternating cycles of isolation and reconnection among the three main basins (Black and Azov Seas, and the more distant Caspian Sea) as well as between them and the Mediterranean Sea, profoundly affected the diversification of its aquatic fauna, leading to a high degree of endemism. Two alternative hypotheses on the origin of this amazing biodiversity have been proposed, corresponding to phases of allopatric separation of aquatic fauna among sea basins: a Late Miocene origin (10-6 MYA) vs. a more recent Pleistocene ancestry (<2 MYA). Both hypotheses support a vicariant origin of (1) Black + Azov Sea lineages on the one hand, and (2) Caspian Sea lineages on the other. Here, we present a study on the Ponto-Caspian endemic amphipod Pontogammarus maeoticus. We assessed patterns of divergence based on (a) two mitochondrial and one nuclear gene, and (b) a morphometric analysis of 23 morphological traits in 16 populations from South and West Caspian Sea, South Azov Sea and North-West Black Sea. Genetic data indicate a long and independent evolutionary history, dating back from the late Miocene to early Pleistocene (6.6-1.6 MYA), for an unexpected, major split between (i) a Black Sea clade and (ii) a well-supported clade grouping individuals from the Caspian and Azov Seas. Absence of shared haplotypes argues against either recent or human-mediated exchanges between Caspian and Azov Seas. A mismatch distribution analysis supports more stable population demography in the Caspian than in the Black Sea populations. Morphological divergence largely followed patterns of genetic divergence: our analyses grouped samples according to the basin of origin and corroborated the close phylogenetic affinity between Caspian and Azov Sea lineages. Altogether, our results highlight the necessity of careful (group-specific) evaluation of evolutionary trajectories in marine taxa that should certainly not be inferred from the current geographical proximity of sea basins alone. (C) 2013 Elsevier Inc. All rights reserved. KW - Biodiversity hotspot KW - Black Sea KW - Caspian Sea KW - Paratethys KW - Sea of Azov KW - Vicariance Y1 - 2013 U6 - https://doi.org/10.1016/j.ympev.2013.05.021 SN - 1055-7903 SN - 1095-9513 VL - 69 IS - 3 SP - 1063 EP - 1076 PB - Elsevier CY - San Diego ER - TY - GEN A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Tiedemann, Ralph T1 - Intraspecific rearrangement of duplicated mitochondrial control regions in the luzon tarictic hornbill penelopides manillae (Aves: Bucerotidae) T2 - Journal of molecular evolution N2 - Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography. KW - Bucerotidae KW - Concerted evolution KW - Control region KW - Mitochondrial gene order KW - Mitochondrial recombination KW - Philippine archipelago Y1 - 2013 U6 - https://doi.org/10.1007/s00239-013-9591-y SN - 0022-2844 SN - 1432-1432 VL - 77 IS - 5-6 SP - 199 EP - 205 PB - Springer CY - New York ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - DeMatthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea Y1 - 2013 UR - 1960 = DOI: 10.1186/1742-9994-10-21 SN - 1742-9994 ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea JF - Frontiers in zoology N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2013 U6 - https://doi.org/10.1186/1742-9994-10-21 SN - 1742-9994 VL - 10 IS - 4-5 PB - BioMed Central CY - London ER - TY - GEN A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea BT - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 399 KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401110 ER - TY - JOUR A1 - Zarattini, Paola A1 - Mura, Graziella A1 - Ketmaier, Valerio T1 - Intra-specific variability in the thirteen known populations of the fairy shrimp Chirocephalus ruffoi (Crustacea: Anostraca) - resting egg morphometrics and mitochondrial DNA reveal decoupled patterns of deep divergence JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Chirocephalus ruffoi is a fairy shrimp endemic to the Italian peninsula, where it is known only from thirteen high mountain locations. Twelve of these are in the Northern Apennines while the thirteenth is about 700 km away in the Calabrian Apennines (Southern Italy). We quantified degree of genetic divergence within the species by sequencing a fragment of the mitochondrial DNA encoding for Cytochrome Oxidase I. We then combined genetic data with the re-analysis of two different datasets on the morphometrics of the resting eggs (cysts) produced by the species as an adaptation to survive seasonal droughts. Genetic data revealed profound divergence; we identified four clusters of haplotypes within the species phylogeography, three in the Northern Apennines and one in the Calabrian Apennines with most of the genetic variation (a parts per thousand 70%) being apportioned among haplogroups. We found high variability in cyst morphometrics, especially in cyst size and height of the spines ornamenting the surface. Genetic and morphometric data are decoupled suggesting that cyst morphology is either under selection or a plastic trait. We, therefore, caution against using cyst morphology for taxonomic purposes in anostracans. KW - Anostraca KW - Resting eggs KW - Morphometrics KW - Cytochrome oxidase I KW - Population structure Y1 - 2013 U6 - https://doi.org/10.1007/s10750-013-1487-8 SN - 0018-8158 VL - 713 IS - 1 SP - 19 EP - 34 PB - Springer CY - Dordrecht ER - TY - INPR A1 - Lo Brutto, Sabrina A1 - Arculeo, Marco A1 - Krapp-Schickel, Traudl A1 - Ketmaier, Valerio T1 - Foreword to the special issue "New frontiers for monitoring european biodiversity - the role and importance of amphipod crustaceans" T2 - Crustaceana : international journal of crustacean research Y1 - 2013 U6 - https://doi.org/10.1163/15685403-00003204 SN - 0011-216X VL - 86 IS - 7-8 SP - 769 EP - 779 PB - Brill CY - Leiden ER - TY - JOUR A1 - Pavesi, Laura A1 - Ketmaier, Valerio T1 - Patterns of genetics structuring and levels of differentiation in supralittoral talitrid amphipods - an overview JF - Crustaceana : international journal of crustacean research N2 - Talitrids are the only family within the order Amphipoda to have colonised supralittoral and terrestrial environments. They live in a variety of settings, from sandy to rocky and pebble beaches, to river and lake banks, and to leaf litter and caves. A common feature is the absence of a planktonic larval stage to facilitate passive dispersal over long-distances. However, some species have broad distributions. Genetic studies over the past 25 years have tried to explain this apparent contradiction by assessing patterns of species genetic structuring on different geographical scales. Here, we review the molecular studies available to date and focus on the population genetics of talitrids. Most of these studies considered populations in the Mediterranean area, but also along the Atlantic coast and in Canary Island caves. From this review, the group emerges as a potential model to understand processes of dispersal and divergence in non-highly-vagile supralittoral organisms. At the same time, studies on these issues are still too restricted geographically: a worldwide scale including different regions would provide us with a better perspective on these problems. KW - Supralittoral talitrids KW - dispersal KW - gene flow KW - allozymes KW - mitochondrial DNA KW - microsatellites Y1 - 2013 U6 - https://doi.org/10.1163/15685403-00003212 SN - 0011-216X VL - 86 IS - 7-8 SP - 890 EP - 907 PB - Brill CY - Leiden ER - TY - JOUR A1 - Taylan, Mehmet Sait A1 - Di Russo, Claudio A1 - Rampini, Mauro A1 - Ketmaier, Valerio T1 - Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey mitochondrial 16S rDNA evidences JF - ZooKeys N2 - This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus. Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. KW - Troglophilus KW - Rhaphidophoridae KW - Orthoptera KW - 16S rDNA KW - mitochondrial DNA KW - molecular systematics KW - cave crickets Y1 - 2013 U6 - https://doi.org/10.3897/zookeys.257.4133 SN - 1313-2989 IS - 257 SP - 33 EP - 46 PB - Pensoft Publ. CY - Sofia ER - TY - THES A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Krause, Ulrike A1 - Curio, Eberhard A1 - Tiedemann, Ralph T1 - Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss Y1 - 2012 UR - http://www.biomedcentral.com/content/pdf/1471-2148-12-203.pdf U6 - https://doi.org/10.1186/1471-2148-12-203 ER - TY - JOUR A1 - Ketmaier, Valerio A1 - Marrone, Federico A1 - Alfonso, Giuseppe A1 - Paulus, Kirsten B. A1 - Wiemann, Annika A1 - Tiedemann, Ralph A1 - Mura, Graziella T1 - Mitochondrial DNA regionalism and historical demography in the extant populations of chirocephalus kerkyrensis (Branchiopoda: Anostraca) JF - PLoS one N2 - Background: Mediterranean temporary water bodies are important reservoirs of biodiversity and host a unique assemblage of diapausing aquatic invertebrates. These environments are currently vanishing because of increasing human pressure. Chirocephalus kerkyrensis is a fairy shrimp typical of temporary water bodies in Mediterranean plain forests and has undergone a substantial decline in number of populations in recent years due to habitat loss. We assessed patterns of genetic connectivity and phylogeographic history in the seven extant populations of the species from Albania, Corfu Is. (Greece), Southern and Central Italy. Methodology/Principal Findings: We analyzed sequence variation at two mitochondrial DNA genes (Cytochrome Oxidase I and 16s rRNA) in all the known populations of C. kerkyrensis. We used multiple phylogenetic, phylogeographic and coalescence-based approaches to assess connectivity and historical demography across the whole distribution range of the species. C. kerkyrensis is genetically subdivided into three main mitochondrial lineages; two of them are geographically localized (Corfu Is. and Central Italy) and one encompasses a wide geographic area (Albania and Southern Italy). Most of the detected genetic variation (approximate to 81%) is apportioned among the aforementioned lineages. Conclusions/Significance: Multiple analyses of mismatch distributions consistently supported both past demographic and spatial expansions with the former predating the latter; demographic expansions were consistently placed during interglacial warm phases of the Pleistocene while spatial expansions were restricted to cold periods. Coalescence methods revealed a scenario of past isolation with low levels of gene flow in line with what is already known for other co-distributed fairy shrimps and suggest drift as the prevailing force in promoting local divergence. We recommend that these evolutionary trajectories should be taken in proper consideration in any effort aimed at protecting Mediterranean temporary water bodies. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0030082 SN - 1932-6203 VL - 7 IS - 2 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Silva-Iturriza, Adriana A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Profound population structure in the Philippine Bulbul Hypsipetes philippinus (Pycnonotidae, Ayes) is not reflected in its Haemoproteus haemosporidian parasite JF - Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID) N2 - In this study we used molecular markers to screen for the occurrence and prevalence of the three most common haemosporidian genera (Haemoproteus, Plasmodium, and Leucocytozoon) in blood samples of the Philippine Bulbul (Hypsipetes philippinus), a thrush-size passerine bird endemic to the Philippine Archipelago. We then used molecular data to ask whether the phylogeographic patterns in this insular host-parasite system might follow similar evolutionary trajectories or not. We took advantage of a previous study describing the pattern of genetic structuring in the Philippine Bulbul across the Central Philippine Archipelago (6 islands, 7 populations and 58 individuals; three mitochondrial DNA genes). The very same birds were here screened for the occurrence of parasites by species-specific PCR assays of the mitochondrial cytochrome b gene (471 base pairs). Twenty-eight out of the 58 analysed birds had Haemoproteus (48%) infections while just 2% of the birds were infected with either Leucocytozoon or Plasmodium. Sixteen of the 28 birds carrying Haemoproteus had multiple infections. The phylogeography of the Philippine Bulbul mostly reflects the geographical origin of samples and it is consistent with the occurrence of two different subspecies on (1) Semirara and (2) Carabao, Boracay, North Gigante, Panay, and Negros, respectively. Haemoproteus phylogeography shows very little geographical structure, suggesting extensive gene flow among locations. While movements of birds among islands seem very sporadic, we found co-occurring evolutionary divergent parasite lineages. We conclude that historical processes have played a major role in shaping the host phylogeography, while they have left no signature in that of the parasites. Here ongoing population processes, possibly multiple reinvasions mediated by other hosts, are predominant. KW - Haemoproteus KW - Hypsipetes philippinus KW - Comparative phylogeography KW - mtDNA Y1 - 2012 U6 - https://doi.org/10.1016/j.meegid.2011.10.024 SN - 1567-1348 VL - 12 IS - 1 SP - 127 EP - 136 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Intron structure of the elongation factor 1-alpha gene in the ponto-caspian amphipod pontogammarus maeoticus (Sowinsky, 1894) and its phylogeographic utility JF - Journal of crustacean biology N2 - We tested the utility of a 230 base pair intron fragment of the highly conserved nuclear gene Elongation Factor 1-alpha (EF1-alpha) as a proper marker to reconstruct the phylogeography of the marine amphipod Pontogammarus maeoticus (Sowinsky, 1894) from the Caspian and Black Seas. As a prerequisite for further analysis, we confirmed by Southern blot analysis that EF1-alpha is encoded at a single locus in P. maeoticus. We included 15 populations and 60 individuals in the study. Both the phylogeny of the 27 unique alleles found and population genetic analyses revealed a significant differentiation between populations from the aforementioned sea basins. Our results are in remarkable agreement with recent studies on a variety of species from the same area, which invariably support a major phylogeographic break between the Caspian and Black Seas. We thus conclude that our EF1-alpha intron is an informative marker for phylogeographic studies in amphipods at the shallow population level. KW - Amphipoda KW - Elongation Factor 1-alpha KW - phylogeography KW - Ponto-Caspian region KW - Pontogammarus maeoticus Y1 - 2012 U6 - https://doi.org/10.1163/193724012X626584 SN - 0278-0372 VL - 32 IS - 3 SP - 425 EP - 433 PB - Brill CY - San Antonio ER -