TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Maximum Possible and the Maximum Expected Earthquake Magnitude for Production-Induced Earthquakes at the Gas Field in Groningen, The Netherlands JF - Bulletin of the Seismological Society of America N2 - The Groningen gas field serves as a natural laboratory for production-induced earthquakes, because no earthquakes were observed before the beginning of gas production. Increasing gas production rates resulted in growing earthquake activity and eventually in the occurrence of the 2012M(w) 3.6 Huizinge earthquake. At least since this event, a detailed seismic hazard and risk assessment including estimation of the maximum earthquake magnitude is considered to be necessary to decide on the future gas production. In this short note, we first apply state-of-the-art methods of mathematical statistics to derive confidence intervals for the maximum possible earthquake magnitude m(max). Second, we calculate the maximum expected magnitude M-T in the time between 2016 and 2024 for three assumed gas-production scenarios. Using broadly accepted physical assumptions and 90% confidence level, we suggest a value of m(max) 4.4, whereas M-T varies between 3.9 and 4.3, depending on the production scenario. Y1 - 2016 U6 - https://doi.org/10.1785/0120160220 SN - 0037-1106 SN - 1943-3573 VL - 106 SP - 2917 EP - 2921 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Salamat, Mona A1 - Zöller, Gert A1 - Zare, Mehdi A1 - Amini, Mortaza T1 - The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings JF - Journal of seismology N2 - One of the crucial components in seismic hazard analysis is the estimation of the maximum earthquake magnitude and associated uncertainty. In the present study, the uncertainty related to the maximum expected magnitude mu is determined in terms of confidence intervals for an imposed level of confidence. Previous work by Salamat et al. (Pure Appl Geophys 174:763-777, 2017) shows the divergence of the confidence interval of the maximum possible magnitude m(max) for high levels of confidence in six seismotectonic zones of Iran. In this work, the maximum expected earthquake magnitude mu is calculated in a predefined finite time interval and imposed level of confidence. For this, we use a conceptual model based on a doubly truncated Gutenberg-Richter law for magnitudes with constant b-value and calculate the posterior distribution of mu for the time interval T-f in future. We assume a stationary Poisson process in time and a Gutenberg-Richter relation for magnitudes. The upper bound of the magnitude confidence interval is calculated for different time intervals of 30, 50, and 100 years and imposed levels of confidence alpha = 0.5, 0.1, 0.05, and 0.01. The posterior distribution of waiting times T-f to the next earthquake with a given magnitude equal to 6.5, 7.0, and7.5 are calculated in each zone. In order to find the influence of declustering, we use the original and declustered version of the catalog. The earthquake catalog of the territory of Iran and surroundings are subdivided into six seismotectonic zones Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh, and Makran. We assume the maximum possible magnitude m(max) = 8.5 and calculate the upper bound of the confidence interval of mu in each zone. The results indicate that for short time intervals equal to 30 and 50 years and imposed levels of confidence 1 - alpha = 0.95 and 0.90, the probability distribution of mu is around mu = 7.16-8.23 in all seismic zones. KW - Maximum expected earthquake magnitude KW - Future time interval KW - Level of confidence KW - Iran Y1 - 2018 U6 - https://doi.org/10.1007/s10950-018-9780-7 SN - 1383-4649 SN - 1573-157X VL - 22 IS - 6 SP - 1485 EP - 1498 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias A1 - Hainzl, Sebastian T1 - The Maximum Earthquake Magnitude in a Time Horizon: Theory and Case Studies JF - Bulletin of the Seismological Society of America N2 - We show how the maximum magnitude within a predefined future time horizon may be estimated from an earthquake catalog within the context of Gutenberg-Richter statistics. The aim is to carry out a rigorous uncertainty assessment, and calculate precise confidence intervals based on an imposed level of confidence a. In detail, we present a model for the estimation of the maximum magnitude to occur in a time interval T-f in the future, given a complete earthquake catalog for a time period T in the past and, if available, paleoseismic events. For this goal, we solely assume that earthquakes follow a stationary Poisson process in time with unknown productivity Lambda and obey the Gutenberg-Richter law in magnitude domain with unknown b-value. The random variables. and b are estimated by means of Bayes theorem with noninformative prior distributions. Results based on synthetic catalogs and on retrospective calculations of historic catalogs from the highly active area of Japan and the low-seismicity, but high-risk region lower Rhine embayment (LRE) in Germany indicate that the estimated magnitudes are close to the true values. Finally, we discuss whether the techniques can be extended to meet the safety requirements for critical facilities such as nuclear power plants. For this aim, the maximum magnitude for all times has to be considered. In agreement with earlier work, we find that this parameter is not a useful quantity from the viewpoint of statistical inference. Y1 - 2013 U6 - https://doi.org/10.1785/0120120013 SN - 0037-1106 VL - 103 IS - 2A SP - 860 EP - 875 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias A1 - Hainzl, Sebastian A1 - Zhuang, Jiancang T1 - The largest expected earthquake magnitudes in Japan: The statistical perspective JF - Bulletin of the Seismological Society of America N2 - Earthquake catalogs are probably the most informative data source about spatiotemporal seismicity evolution. The catalog quality in one of the most active seismogenic zones in the world, Japan, is excellent, although changes in quality arising, for example, from an evolving network are clearly present. Here, we seek the best estimate for the largest expected earthquake in a given future time interval from a combination of historic and instrumental earthquake catalogs. We extend the technique introduced by Zoller et al. (2013) to estimate the maximum magnitude in a time window of length T-f for earthquake catalogs with varying level of completeness. In particular, we consider the case in which two types of catalogs are available: a historic catalog and an instrumental catalog. This leads to competing interests with respect to the estimation of the two parameters from the Gutenberg-Richter law, the b-value and the event rate lambda above a given lower-magnitude threshold (the a-value). The b-value is estimated most precisely from the frequently occurring small earthquakes; however, the tendency of small events to cluster in aftershocks, swarms, etc. violates the assumption of a Poisson process that is used for the estimation of lambda. We suggest addressing conflict by estimating b solely from instrumental seismicity and using large magnitude events from historic catalogs for the earthquake rate estimation. Applying the method to Japan, there is a probability of about 20% that the maximum expected magnitude during any future time interval of length T-f = 30 years is m >= 9.0. Studies of different subregions in Japan indicates high probabilities for M 8 earthquakes along the Tohoku arc and relatively low probabilities in the Tokai, Tonankai, and Nankai region. Finally, for scenarios related to long-time horizons and high-confidence levels, the maximum expected magnitude will be around 10. Y1 - 2014 U6 - https://doi.org/10.1785/0120130103 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 2 SP - 769 EP - 779 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Zöller, Gert A1 - Ullah, Shahid A1 - Bindi, Dino A1 - Parolai, Stefano A1 - Mikhailova, Natalya T1 - The largest expected earthquake magnitudes in Central Asia BT - statistical inference from an earthquake catalogue with uncertain magnitudes JF - Seismicity, fault rupture and earthquake hazards in slowly deforming regions N2 - The knowledge of the largest expected earthquake magnitude in a region is one of the key issues in probabilistic seismic hazard calculations and the estimation of worst-case scenarios. Earthquake catalogues are the most informative source of information for the inference of earthquake magnitudes. We analysed the earthquake catalogue for Central Asia with respect to the largest expected magnitudes m(T) in a pre-defined time horizon T-f using a recently developed statistical methodology, extended by the explicit probabilistic consideration of magnitude errors. For this aim, we assumed broad error distributions for historical events, whereas the magnitudes of recently recorded instrumental earthquakes had smaller errors. The results indicate high probabilities for the occurrence of large events (M >= 8), even in short time intervals of a few decades. The expected magnitudes relative to the assumed maximum possible magnitude are generally higher for intermediate-depth earthquakes (51-300 km) than for shallow events (0-50 km). For long future time horizons, for example, a few hundred years, earthquakes with M >= 8.5 have to be taken into account, although, apart from the 1889 Chilik earthquake, it is probable that no such event occurred during the observation period of the catalogue. Y1 - 2017 SN - 978-1-86239-745-3 SN - 978-1-86239-964-8 U6 - https://doi.org/10.1144/SP432.3 SN - 0305-8719 VL - 432 SP - 29 EP - 40 PB - The Geological Society CY - London ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Earthquake History in a Fault Zone Tells Us Almost Nothing about m(max) JF - Seismological research letters N2 - In the present study, we summarize and evaluate the endeavors from recent years to estimate the maximum possible earthquake magnitude m(max) from observed data. In particular, we use basic and physically motivated assumptions to identify best cases and worst cases in terms of lowest and highest degree of uncertainty of m(max). In a general framework, we demonstrate that earthquake data and earthquake proxy data recorded in a fault zone provide almost no information about m(max) unless reliable and homogeneous data of a long time interval, including several earthquakes with magnitude close to m(max), are available. Even if detailed earthquake information from some centuries including historic and paleoearthquakes are given, only very few, namely the largest events, will contribute at all to the estimation of m(max), and this results in unacceptably high uncertainties. As a consequence, estimators of m(max) in a fault zone, which are based solely on earthquake-related information from this region, have to be dismissed. Y1 - 2016 U6 - https://doi.org/10.1785/0220150176 SN - 0895-0695 SN - 1938-2057 VL - 87 SP - 132 EP - 137 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Engbert, Ralf A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Kurths, Jürgen T1 - Testing for unstable periodic orbits to characterize spatiotemporal dynamics Y1 - 1998 ER - TY - JOUR A1 - Richter, Gudrun A1 - Hainzl, Sebastian A1 - Dahm, Torsten A1 - Zöller, Gert T1 - Stress-based, statistical modeling of the induced seismicity at the Groningen gas field BT - the Netherlands JF - Environmental earth sciences N2 - Groningen is the largest onshore gas field under production in Europe. The pressure depletion of the gas field started in 1963. In 1991, the first induced micro-earthquakes have been located at reservoir level with increasing rates in the following decades. Most of these events are of magnitude less than 2.0 and cannot be felt. However, maximum observed magnitudes continuously increased over the years until the largest, significant event with ML=3.6 was recorded in 2014, which finally led to the decision to reduce the production. This causal sequence displays the crucial role of understanding and modeling the relation between production and induced seismicity for economic planing and hazard assessment. Here we test whether the induced seismicity related to gas exploration can be modeled by the statistical response of fault networks with rate-and-state-dependent frictional behavior. We use the long and complete local seismic catalog and additionally detailed information on production-induced changes at the reservoir level to test different seismicity models. Both the changes of the fluid pressure and of the reservoir compaction are tested as input to approximate the Coulomb stress changes. We find that the rate-and-state model with a constant tectonic background seismicity rate can reproduce the observed long delay of the seismicity onset. In contrast, so-called Coulomb failure models with instantaneous earthquake nucleation need to assume that all faults are initially far from a critical state of stress to explain the delay. Our rate-and-state model based on the fluid pore pressure fits the spatiotemporal pattern of the seismicity best, where the fit further improves by taking the fault density and orientation into account. Despite its simplicity with only three free parameters, the rate-and-state model can reproduce the main statistical features of the observed activity. KW - induced seismicity KW - modeling KW - statistical seismology KW - forecast Y1 - 2020 U6 - https://doi.org/10.1007/s12665-020-08941-4 SN - 1866-6280 SN - 1866-6299 VL - 79 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Wang, Lifeng A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - Stress- and aftershock-constrained joint inversions for coseismic and postseismic slip applied to the 2004 M6.0 Parkfield earthquake JF - Journal of geophysical research : Solid earth N2 - Both aftershocks and geodetically measured postseismic displacements are important markers of the stress relaxation process following large earthquakes. Postseismic displacements can be related to creep-like relaxation in the vicinity of the coseismic rupture by means of inversion methods. However, the results of slip inversions are typically non-unique and subject to large uncertainties. Therefore, we explore the possibility to improve inversions by mechanical constraints. In particular, we take into account the physical understanding that postseismic deformation is stress-driven, and occurs in the coseismically stressed zone. We do joint inversions for coseismic and postseismic slip in a Bayesian framework in the case of the 2004 M6.0 Parkfield earthquake. We perform a number of inversions with different constraints, and calculate their statistical significance. According to information criteria, the best result is preferably related to a physically reasonable model constrained by the stress-condition (namely postseismic creep is driven by coseismic stress) and the condition that coseismic slip and large aftershocks are disjunct. This model explains 97% of the coseismic displacements and 91% of the postseismic displacements during day 1-5 following the Parkfield event, respectively. It indicates that the major postseismic deformation can be generally explained by a stress relaxation process for the Parkfield case. This result also indicates that the data to constrain the coseismic slip model could be enriched postseismically. For the 2004 Parkfield event, we additionally observe asymmetric relaxation process at the two sides of the fault, which can be explained by material contrast ratio across the fault of similar to 1.15 in seismic velocity. Y1 - 2012 U6 - https://doi.org/10.1029/2011JB009017 SN - 2169-9313 SN - 2169-9356 VL - 117 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Kurths, Jürgen T1 - Similar power laws for foreshock and aftershock sequences in a spring block model for earthquakes Y1 - 1999 ER - TY - JOUR A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Kurths, Jürgen T1 - Self-organized criticality model for earthquakes : Quiescence, foreshocks and aftershocks Y1 - 1999 ER - TY - JOUR A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Kurths, Jürgen T1 - Self-organization of spatio-temporal earthquake clusters Y1 - 2000 ER - TY - JOUR A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Kurths, Jürgen A1 - Zschau, Jochen T1 - Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality Y1 - 2000 ER - TY - JOUR A1 - Zöller, Gert A1 - Hainzl, Sebastian A1 - Holschneider, Matthias T1 - Recurrence of Large Earthquakes : bayesian inference from catalogs in the presence of magnitude uncertainties N2 - We present a Bayesian method that allows continuous updating the aperiodicity of the recurrence time distribution of large earthquakes based on a catalog with magnitudes above a completeness threshold. The approach uses a recently proposed renewal model for seismicity and allows the inclusion of magnitude uncertainties in a straightforward manner. Errors accounting for grouped magnitudes and random errors are studied and discussed. The results indicate that a stable and realistic value of the aperiodicity can be predicted in an early state of seismicity evolution, even though only a small number of large earthquakes has occurred to date. Furthermore, we demonstrate that magnitude uncertainties can drastically influence the results and can therefore not be neglected. We show how to correct for the bias caused by magnitude errors. For the region of Parkfield we find that the aperiodicity, or the coefficient of variation, is clearly higher than in studies which are solely based on the large earthquakes. Y1 - 2010 UR - http://www.springerlink.com/content/101201 U6 - https://doi.org/10.1007/s00024-010-0078-0 SN - 0033-4553 ER - TY - JOUR A1 - Hainzl, Sebastian A1 - Brietzke, Gilbert B. A1 - Zöller, Gert T1 - Quantitative earthquake forecasts resulting from static stress triggering N2 - In recent years, the triggering of earthquakes has been discussed controversially with respect to the underlying mechanisms and the capability to evaluate the resulting seismic hazard. Apart from static stress interactions, other mechanisms including dynamic stress transfer have been proposed to be part of a complex triggering process. Exploiting the theoretical relation between long-term earthquake rates and stressing rate, we demonstrate that static stress changes resulting from an earthquake rupture allow us to predict quantitatively the aftershock activity without tuning specific model parameters. These forecasts are found to be in excellent agreement with all first-order characteristics of aftershocks, in particular, (1) the total number, (2) the power law distance decay, (3) the scaling of the productivity with the main shock magnitude, (4) the foreshock probability, and (5) the empirical Bath law providing the maximum aftershock magnitude, which supports the conclusion that static stress transfer is the major mechanism of earthquake triggering. Y1 - 2010 UR - http://www.agu.org/journals/jb/ U6 - https://doi.org/10.1029/2010jb007473 SN - 0148-0227 ER - TY - JOUR A1 - Schoppa, Lukas A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Zöller, Gert A1 - Kreibich, Heidi T1 - Probabilistic flood loss models for companies JF - Water resources research N2 - Flood loss modeling is a central component of flood risk analysis. Conventionally, this involves univariable and deterministic stage-damage functions. Recent advancements in the field promote the use of multivariable and probabilistic loss models, which consider variables beyond inundation depth and account for prediction uncertainty. Although companies contribute significantly to total loss figures, novel modeling approaches for companies are lacking. Scarce data and the heterogeneity among companies impede the development of company flood loss models. We present three multivariable flood loss models for companies from the manufacturing, commercial, financial, and service sector that intrinsically quantify prediction uncertainty. Based on object-level loss data (n = 1,306), we comparatively evaluate the predictive capacity of Bayesian networks, Bayesian regression, and random forest in relation to deterministic and probabilistic stage-damage functions, serving as benchmarks. The company loss data stem from four postevent surveys in Germany between 2002 and 2013 and include information on flood intensity, company characteristics, emergency response, private precaution, and resulting loss to building, equipment, and goods and stock. We find that the multivariable probabilistic models successfully identify and reproduce essential relationships of flood damage processes in the data. The assessment of model skill focuses on the precision of the probabilistic predictions and reveals that the candidate models outperform the stage-damage functions, while differences among the proposed models are negligible. Although the combination of multivariable and probabilistic loss estimation improves predictive accuracy over the entire data set, wide predictive distributions stress the necessity for the quantification of uncertainty. KW - flood loss estimation KW - probabilistic modeling KW - companies KW - multivariable KW - models Y1 - 2020 U6 - https://doi.org/10.1029/2020WR027649 SN - 0043-1397 SN - 1944-7973 VL - 56 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Salamat, Mona A1 - Zöller, Gert A1 - Amini, Morteza T1 - Prediction of the Maximum Expected Earthquake Magnitude in Iran: BT - from a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes JF - Pure and applied geophysics N2 - This paper concerns the problem of predicting the maximum expected earthquake magnitude μ in a future time interval Tf given a catalog covering a time period T in the past. Different studies show the divergence of the confidence interval of the maximum possible earthquake magnitude m_{ max } for high levels of confidence (Salamat et al. 2017). Therefore, m_{ max } should be better replaced by μ (Holschneider et al. 2011). In a previous study (Salamat et al. 2018), μ is estimated for an instrumental earthquake catalog of Iran from 1900 onwards with a constant level of completeness ( {m0 = 5.5} ). In the current study, the Bayesian methodology developed by Zöller et al. (2014, 2015) is applied for the purpose of predicting μ based on the catalog consisting of both historical and instrumental parts. The catalog is first subdivided into six subcatalogs corresponding to six seismotectonic zones, and each of those zone catalogs is subsequently subdivided according to changes in completeness level and magnitude uncertainty. For this, broad and small error distributions are considered for historical and instrumental earthquakes, respectively. We assume that earthquakes follow a Poisson process in time and Gutenberg-Richter law in the magnitude domain with a priori unknown a and b values which are first estimated by Bayes' theorem and subsequently used to estimate μ. Imposing different values of m_{ max } for different seismotectonic zones namely Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh and Makran, the results show considerable probabilities for the occurrence of earthquakes with Mw ≥ 7.5 in short Tf , whereas for long Tf, μ is almost equal to m_{ max } KW - Maximum expected earthquake magnitude KW - completeness levels KW - magnitude errors KW - Bayesian method KW - Iran Y1 - 2019 U6 - https://doi.org/10.1007/s00024-019-02141-3 SN - 0033-4553 SN - 1420-9136 VL - 176 IS - 8 SP - 3425 EP - 3438 PB - Springer CY - Basel ER - TY - JOUR A1 - Zöller, Gert A1 - Hainzl, Sebastian A1 - Kurths, Jürgen T1 - Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes Y1 - 2001 ER - TY - JOUR A1 - Fiedler, Bernhard A1 - Zöller, Gert A1 - Holschneider, Matthias A1 - Hainzl, Sebastian T1 - Multiple Change-Point Detection in Spatiotemporal Seismicity Data JF - Bulletin of the Seismological Society of America N2 - Earthquake rates are driven by tectonic stress buildup, earthquake-induced stress changes, and transient aseismic processes. Although the origin of the first two sources is known, transient aseismic processes are more difficult to detect. However, the knowledge of the associated changes of the earthquake activity is of great interest, because it might help identify natural aseismic deformation patterns such as slow-slip events, as well as the occurrence of induced seismicity related to human activities. For this goal, we develop a Bayesian approach to identify change-points in seismicity data automatically. Using the Bayes factor, we select a suitable model, estimate possible change-points, and we additionally use a likelihood ratio test to calculate the significance of the change of the intensity. The approach is extended to spatiotemporal data to detect the area in which the changes occur. The method is first applied to synthetic data showing its capability to detect real change-points. Finally, we apply this approach to observational data from Oklahoma and observe statistical significant changes of seismicity in space and time. Y1 - 2018 U6 - https://doi.org/10.1785/0120170236 SN - 0037-1106 SN - 1943-3573 VL - 108 IS - 3A SP - 1147 EP - 1159 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Maghsoudi, Samira A1 - Cesca, Simone A1 - Hainzl, Sebastian A1 - Dahm, Torsten A1 - Zöller, Gert A1 - Kaiser, Diethelm T1 - Maximum Magnitude of Completeness in a Salt Mine JF - Bulletin of the Seismological Society of America N2 - In this study, we analyze acoustic emission (AE) data recorded at the Morsleben salt mine, Germany, to assess the catalog completeness, which plays an important role in any seismicity analysis. We introduce the new concept of a magnitude completeness interval consisting of a maximum magnitude of completeness (M-c(max)) in addition to the well-known minimum magnitude of completeness. This is required to describe the completeness of the catalog, both for the smallest events (for which the detection performance may be low) and for the largest ones (which may be missed because of sensors saturation). We suggest a method to compute the maximum magnitude of completeness and calculate it for a spatial grid based on (1) the prior estimation of saturation magnitude at each sensor, (2) the correction of the detection probability function at each sensor, including a drop in the detection performance when it saturates, and (3) the combination of detection probabilities of all sensors to obtain the network detection performance. The method is tested using about 130,000 AE events recorded in a period of five weeks, with sources confined within a small depth interval, and an example of the spatial distribution of M-c(max) is derived. The comparison between the spatial distribution of M-c(max) and of the maximum possible magnitude (M-max), which is here derived using a recently introduced Bayesian approach, indicates that M-max exceeds M-c(max) in some parts of the mine. This suggests that some large and important events may be missed in the catalog, which could lead to a bias in the hazard evaluation. Y1 - 2015 U6 - https://doi.org/10.1785/0120140039 SN - 0037-1106 SN - 1943-3573 VL - 105 IS - 3 SP - 1491 EP - 1501 PB - Seismological Society of America CY - Albany ER -