TY - JOUR A1 - Schaller, Jörg A1 - Puppe, Daniel A1 - Kaczorek, Danuta A1 - Ellerbrock, Ruth A1 - Sommer, Michael T1 - Silicon cycling in soils revisited JF - Plants : open access journal N2 - Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance. KW - andosols KW - clay neoformation KW - crop yield KW - land use change KW - micro KW - aggregate stability KW - phytoliths KW - sediments KW - silicon cycling KW - silicon KW - extraction methods KW - silicon pore water speciation Y1 - 2021 U6 - https://doi.org/10.3390/plants10020295 SN - 2223-7747 VL - 10 IS - 2 PB - MDPI CY - Basel ER -